Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
3 |
1 2
|
clwwlknp |
|- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
4 |
|
lsw |
|- ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
5 |
|
fvoveq1 |
|- ( ( # ` W ) = N -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) |
6 |
4 5
|
sylan9eq |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( lastS ` W ) = ( W ` ( N - 1 ) ) ) |
7 |
6
|
preq1d |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
8 |
7
|
eleq1d |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
9 |
8
|
biimpd |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
10 |
9
|
a1d |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
11 |
10
|
3imp |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
12 |
3 11
|
syl |
|- ( W e. ( N ClWWalksN G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
13 |
12
|
adantl |
|- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
14 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
15 |
14
|
adantr |
|- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> ( ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
16 |
13 15
|
mpbird |
|- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) ) |