Metamath Proof Explorer


Theorem clwwlknnn

Description: The length of a closed walk of a fixed length as word is a positive integer. (Contributed by AV, 22-Mar-2022)

Ref Expression
Assertion clwwlknnn
|- ( W e. ( N ClWWalksN G ) -> N e. NN )

Proof

Step Hyp Ref Expression
1 n0i
 |-  ( W e. ( N ClWWalksN G ) -> -. ( N ClWWalksN G ) = (/) )
2 df-nel
 |-  ( N e/ NN <-> -. N e. NN )
3 2 biimpri
 |-  ( -. N e. NN -> N e/ NN )
4 3 olcd
 |-  ( -. N e. NN -> ( G e/ _V \/ N e/ NN ) )
5 clwwlkneq0
 |-  ( ( G e/ _V \/ N e/ NN ) -> ( N ClWWalksN G ) = (/) )
6 4 5 syl
 |-  ( -. N e. NN -> ( N ClWWalksN G ) = (/) )
7 1 6 nsyl2
 |-  ( W e. ( N ClWWalksN G ) -> N e. NN )