| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
|- ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) ) |
| 2 |
1
|
rabbidv |
|- ( v = X -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } = { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } ) |
| 3 |
|
oveq1 |
|- ( n = N -> ( n ClWWalksN G ) = ( N ClWWalksN G ) ) |
| 4 |
3
|
rabeqdv |
|- ( n = N -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } ) |
| 5 |
|
clwwlknonmpo |
|- ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) |
| 6 |
|
ovex |
|- ( N ClWWalksN G ) e. _V |
| 7 |
6
|
rabex |
|- { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. _V |
| 8 |
2 4 5 7
|
ovmpo |
|- ( ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } ) |
| 9 |
5
|
mpondm0 |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) |
| 10 |
|
isclwwlkn |
|- ( w e. ( N ClWWalksN G ) <-> ( w e. ( ClWWalks ` G ) /\ ( # ` w ) = N ) ) |
| 11 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 12 |
11
|
clwwlkbp |
|- ( w e. ( ClWWalks ` G ) -> ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) ) |
| 13 |
|
fstwrdne |
|- ( ( w e. Word ( Vtx ` G ) /\ w =/= (/) ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 14 |
13
|
3adant1 |
|- ( ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 15 |
12 14
|
syl |
|- ( w e. ( ClWWalks ` G ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 16 |
15
|
adantr |
|- ( ( w e. ( ClWWalks ` G ) /\ ( # ` w ) = N ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 17 |
10 16
|
sylbi |
|- ( w e. ( N ClWWalksN G ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 18 |
17
|
adantr |
|- ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 19 |
|
eleq1 |
|- ( ( w ` 0 ) = X -> ( ( w ` 0 ) e. ( Vtx ` G ) <-> X e. ( Vtx ` G ) ) ) |
| 20 |
19
|
adantl |
|- ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` 0 ) e. ( Vtx ` G ) <-> X e. ( Vtx ` G ) ) ) |
| 21 |
18 20
|
mpbid |
|- ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> X e. ( Vtx ` G ) ) |
| 22 |
|
clwwlknnn |
|- ( w e. ( N ClWWalksN G ) -> N e. NN ) |
| 23 |
22
|
nnnn0d |
|- ( w e. ( N ClWWalksN G ) -> N e. NN0 ) |
| 24 |
23
|
adantr |
|- ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> N e. NN0 ) |
| 25 |
21 24
|
jca |
|- ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) |
| 26 |
25
|
ex |
|- ( w e. ( N ClWWalksN G ) -> ( ( w ` 0 ) = X -> ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) ) |
| 27 |
26
|
con3rr3 |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( w e. ( N ClWWalksN G ) -> -. ( w ` 0 ) = X ) ) |
| 28 |
27
|
ralrimiv |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> A. w e. ( N ClWWalksN G ) -. ( w ` 0 ) = X ) |
| 29 |
|
rabeq0 |
|- ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } = (/) <-> A. w e. ( N ClWWalksN G ) -. ( w ` 0 ) = X ) |
| 30 |
28 29
|
sylibr |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } = (/) ) |
| 31 |
9 30
|
eqtr4d |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } ) |
| 32 |
8 31
|
pm2.61i |
|- ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } |