| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknon1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
clwwlknon1.c |
|- C = ( ClWWalksNOn ` G ) |
| 3 |
|
clwwlknon1.e |
|- E = ( Edg ` G ) |
| 4 |
2
|
oveqi |
|- ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 ) |
| 5 |
4
|
a1i |
|- ( X e. V -> ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 ) ) |
| 6 |
|
clwwlknon |
|- ( X ( ClWWalksNOn ` G ) 1 ) = { w e. ( 1 ClWWalksN G ) | ( w ` 0 ) = X } |
| 7 |
6
|
a1i |
|- ( X e. V -> ( X ( ClWWalksNOn ` G ) 1 ) = { w e. ( 1 ClWWalksN G ) | ( w ` 0 ) = X } ) |
| 8 |
|
clwwlkn1 |
|- ( w e. ( 1 ClWWalksN G ) <-> ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) ) |
| 9 |
8
|
anbi1i |
|- ( ( w e. ( 1 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) |
| 10 |
1
|
eqcomi |
|- ( Vtx ` G ) = V |
| 11 |
10
|
wrdeqi |
|- Word ( Vtx ` G ) = Word V |
| 12 |
11
|
eleq2i |
|- ( w e. Word ( Vtx ` G ) <-> w e. Word V ) |
| 13 |
12
|
biimpi |
|- ( w e. Word ( Vtx ` G ) -> w e. Word V ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) -> w e. Word V ) |
| 15 |
14
|
ad2antrl |
|- ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> w e. Word V ) |
| 16 |
14
|
adantr |
|- ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> w e. Word V ) |
| 17 |
|
simpl1 |
|- ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( # ` w ) = 1 ) |
| 18 |
|
simpr |
|- ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) |
| 19 |
16 17 18
|
3jca |
|- ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) |
| 20 |
19
|
adantl |
|- ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) |
| 21 |
|
wrdl1s1 |
|- ( X e. V -> ( w = <" X "> <-> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) ) |
| 22 |
21
|
adantr |
|- ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> ( w = <" X "> <-> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) ) |
| 23 |
20 22
|
mpbird |
|- ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> w = <" X "> ) |
| 24 |
|
sneq |
|- ( ( w ` 0 ) = X -> { ( w ` 0 ) } = { X } ) |
| 25 |
3
|
eqcomi |
|- ( Edg ` G ) = E |
| 26 |
25
|
a1i |
|- ( ( w ` 0 ) = X -> ( Edg ` G ) = E ) |
| 27 |
24 26
|
eleq12d |
|- ( ( w ` 0 ) = X -> ( { ( w ` 0 ) } e. ( Edg ` G ) <-> { X } e. E ) ) |
| 28 |
27
|
biimpd |
|- ( ( w ` 0 ) = X -> ( { ( w ` 0 ) } e. ( Edg ` G ) -> { X } e. E ) ) |
| 29 |
28
|
a1i |
|- ( X e. V -> ( ( w ` 0 ) = X -> ( { ( w ` 0 ) } e. ( Edg ` G ) -> { X } e. E ) ) ) |
| 30 |
29
|
com13 |
|- ( { ( w ` 0 ) } e. ( Edg ` G ) -> ( ( w ` 0 ) = X -> ( X e. V -> { X } e. E ) ) ) |
| 31 |
30
|
3ad2ant3 |
|- ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) -> ( ( w ` 0 ) = X -> ( X e. V -> { X } e. E ) ) ) |
| 32 |
31
|
imp |
|- ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( X e. V -> { X } e. E ) ) |
| 33 |
32
|
impcom |
|- ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> { X } e. E ) |
| 34 |
15 23 33
|
jca32 |
|- ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) |
| 35 |
|
fveq2 |
|- ( w = <" X "> -> ( # ` w ) = ( # ` <" X "> ) ) |
| 36 |
|
s1len |
|- ( # ` <" X "> ) = 1 |
| 37 |
35 36
|
eqtrdi |
|- ( w = <" X "> -> ( # ` w ) = 1 ) |
| 38 |
37
|
ad2antrl |
|- ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> ( # ` w ) = 1 ) |
| 39 |
38
|
adantl |
|- ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( # ` w ) = 1 ) |
| 40 |
1
|
wrdeqi |
|- Word V = Word ( Vtx ` G ) |
| 41 |
40
|
eleq2i |
|- ( w e. Word V <-> w e. Word ( Vtx ` G ) ) |
| 42 |
41
|
biimpi |
|- ( w e. Word V -> w e. Word ( Vtx ` G ) ) |
| 43 |
42
|
ad2antrl |
|- ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> w e. Word ( Vtx ` G ) ) |
| 44 |
|
fveq1 |
|- ( w = <" X "> -> ( w ` 0 ) = ( <" X "> ` 0 ) ) |
| 45 |
|
s1fv |
|- ( X e. V -> ( <" X "> ` 0 ) = X ) |
| 46 |
44 45
|
sylan9eq |
|- ( ( w = <" X "> /\ X e. V ) -> ( w ` 0 ) = X ) |
| 47 |
46
|
eqcomd |
|- ( ( w = <" X "> /\ X e. V ) -> X = ( w ` 0 ) ) |
| 48 |
47
|
sneqd |
|- ( ( w = <" X "> /\ X e. V ) -> { X } = { ( w ` 0 ) } ) |
| 49 |
3
|
a1i |
|- ( ( w = <" X "> /\ X e. V ) -> E = ( Edg ` G ) ) |
| 50 |
48 49
|
eleq12d |
|- ( ( w = <" X "> /\ X e. V ) -> ( { X } e. E <-> { ( w ` 0 ) } e. ( Edg ` G ) ) ) |
| 51 |
50
|
biimpd |
|- ( ( w = <" X "> /\ X e. V ) -> ( { X } e. E -> { ( w ` 0 ) } e. ( Edg ` G ) ) ) |
| 52 |
51
|
impancom |
|- ( ( w = <" X "> /\ { X } e. E ) -> ( X e. V -> { ( w ` 0 ) } e. ( Edg ` G ) ) ) |
| 53 |
52
|
adantl |
|- ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> ( X e. V -> { ( w ` 0 ) } e. ( Edg ` G ) ) ) |
| 54 |
53
|
impcom |
|- ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> { ( w ` 0 ) } e. ( Edg ` G ) ) |
| 55 |
39 43 54
|
3jca |
|- ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) ) |
| 56 |
46
|
ex |
|- ( w = <" X "> -> ( X e. V -> ( w ` 0 ) = X ) ) |
| 57 |
56
|
ad2antrl |
|- ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> ( X e. V -> ( w ` 0 ) = X ) ) |
| 58 |
57
|
impcom |
|- ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( w ` 0 ) = X ) |
| 59 |
55 58
|
jca |
|- ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) |
| 60 |
34 59
|
impbida |
|- ( X e. V -> ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) ) |
| 61 |
9 60
|
bitrid |
|- ( X e. V -> ( ( w e. ( 1 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) ) |
| 62 |
61
|
rabbidva2 |
|- ( X e. V -> { w e. ( 1 ClWWalksN G ) | ( w ` 0 ) = X } = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) |
| 63 |
5 7 62
|
3eqtrd |
|- ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) |