| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknon1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
clwwlknon1.c |
|- C = ( ClWWalksNOn ` G ) |
| 3 |
|
clwwlknon1.e |
|- E = ( Edg ` G ) |
| 4 |
|
simprl |
|- ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> w = <" X "> ) |
| 5 |
|
s1cl |
|- ( X e. V -> <" X "> e. Word V ) |
| 6 |
5
|
adantr |
|- ( ( X e. V /\ { X } e. E ) -> <" X "> e. Word V ) |
| 7 |
6
|
adantr |
|- ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> <" X "> e. Word V ) |
| 8 |
|
eleq1 |
|- ( w = <" X "> -> ( w e. Word V <-> <" X "> e. Word V ) ) |
| 9 |
8
|
adantl |
|- ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w e. Word V <-> <" X "> e. Word V ) ) |
| 10 |
7 9
|
mpbird |
|- ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> w e. Word V ) |
| 11 |
|
simpr |
|- ( ( X e. V /\ { X } e. E ) -> { X } e. E ) |
| 12 |
11
|
anim1ci |
|- ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w = <" X "> /\ { X } e. E ) ) |
| 13 |
10 12
|
jca |
|- ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) |
| 14 |
13
|
ex |
|- ( ( X e. V /\ { X } e. E ) -> ( w = <" X "> -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) ) |
| 15 |
4 14
|
impbid2 |
|- ( ( X e. V /\ { X } e. E ) -> ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) |
| 16 |
15
|
alrimiv |
|- ( ( X e. V /\ { X } e. E ) -> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) |
| 17 |
1 2 3
|
clwwlknon1 |
|- ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) |
| 18 |
17
|
eqeq1d |
|- ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } ) ) |
| 19 |
18
|
adantr |
|- ( ( X e. V /\ { X } e. E ) -> ( ( X C 1 ) = { <" X "> } <-> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } ) ) |
| 20 |
|
rabeqsn |
|- ( { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } <-> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) |
| 21 |
19 20
|
bitrdi |
|- ( ( X e. V /\ { X } e. E ) -> ( ( X C 1 ) = { <" X "> } <-> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) ) |
| 22 |
16 21
|
mpbird |
|- ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } ) |