| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknon1.c |  |-  C = ( ClWWalksNOn ` G ) | 
						
							| 3 |  | clwwlknon1.e |  |-  E = ( Edg ` G ) | 
						
							| 4 | 1 2 3 | clwwlknon1 |  |-  ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) | 
						
							| 5 | 4 | adantr |  |-  ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) | 
						
							| 6 |  | df-nel |  |-  ( { X } e/ E <-> -. { X } e. E ) | 
						
							| 7 | 6 | biimpi |  |-  ( { X } e/ E -> -. { X } e. E ) | 
						
							| 8 | 7 | olcd |  |-  ( { X } e/ E -> ( -. w = <" X "> \/ -. { X } e. E ) ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( X e. V /\ { X } e/ E ) /\ w e. Word V ) -> ( -. w = <" X "> \/ -. { X } e. E ) ) | 
						
							| 10 |  | ianor |  |-  ( -. ( w = <" X "> /\ { X } e. E ) <-> ( -. w = <" X "> \/ -. { X } e. E ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( ( X e. V /\ { X } e/ E ) /\ w e. Word V ) -> -. ( w = <" X "> /\ { X } e. E ) ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( X e. V /\ { X } e/ E ) -> A. w e. Word V -. ( w = <" X "> /\ { X } e. E ) ) | 
						
							| 13 |  | rabeq0 |  |-  ( { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = (/) <-> A. w e. Word V -. ( w = <" X "> /\ { X } e. E ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( X e. V /\ { X } e/ E ) -> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = (/) ) | 
						
							| 15 | 5 14 | eqtrd |  |-  ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) | 
						
							| 16 | 2 | oveqi |  |-  ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 ) | 
						
							| 17 | 1 | eleq2i |  |-  ( X e. V <-> X e. ( Vtx ` G ) ) | 
						
							| 18 | 17 | notbii |  |-  ( -. X e. V <-> -. X e. ( Vtx ` G ) ) | 
						
							| 19 | 18 | biimpi |  |-  ( -. X e. V -> -. X e. ( Vtx ` G ) ) | 
						
							| 20 | 19 | intnanrd |  |-  ( -. X e. V -> -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) ) | 
						
							| 21 |  | clwwlknon0 |  |-  ( -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) | 
						
							| 22 | 20 21 | syl |  |-  ( -. X e. V -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) | 
						
							| 23 | 16 22 | eqtrid |  |-  ( -. X e. V -> ( X C 1 ) = (/) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( -. X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) | 
						
							| 25 | 15 24 | pm2.61ian |  |-  ( { X } e/ E -> ( X C 1 ) = (/) ) |