Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon1.v |
|- V = ( Vtx ` G ) |
2 |
|
clwwlknon1.c |
|- C = ( ClWWalksNOn ` G ) |
3 |
|
clwwlknon1.e |
|- E = ( Edg ` G ) |
4 |
1 2 3
|
clwwlknon1 |
|- ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) |
5 |
4
|
adantr |
|- ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) |
6 |
|
df-nel |
|- ( { X } e/ E <-> -. { X } e. E ) |
7 |
6
|
biimpi |
|- ( { X } e/ E -> -. { X } e. E ) |
8 |
7
|
olcd |
|- ( { X } e/ E -> ( -. w = <" X "> \/ -. { X } e. E ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( X e. V /\ { X } e/ E ) /\ w e. Word V ) -> ( -. w = <" X "> \/ -. { X } e. E ) ) |
10 |
|
ianor |
|- ( -. ( w = <" X "> /\ { X } e. E ) <-> ( -. w = <" X "> \/ -. { X } e. E ) ) |
11 |
9 10
|
sylibr |
|- ( ( ( X e. V /\ { X } e/ E ) /\ w e. Word V ) -> -. ( w = <" X "> /\ { X } e. E ) ) |
12 |
11
|
ralrimiva |
|- ( ( X e. V /\ { X } e/ E ) -> A. w e. Word V -. ( w = <" X "> /\ { X } e. E ) ) |
13 |
|
rabeq0 |
|- ( { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = (/) <-> A. w e. Word V -. ( w = <" X "> /\ { X } e. E ) ) |
14 |
12 13
|
sylibr |
|- ( ( X e. V /\ { X } e/ E ) -> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = (/) ) |
15 |
5 14
|
eqtrd |
|- ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) |
16 |
2
|
oveqi |
|- ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 ) |
17 |
1
|
eleq2i |
|- ( X e. V <-> X e. ( Vtx ` G ) ) |
18 |
17
|
notbii |
|- ( -. X e. V <-> -. X e. ( Vtx ` G ) ) |
19 |
18
|
biimpi |
|- ( -. X e. V -> -. X e. ( Vtx ` G ) ) |
20 |
19
|
intnanrd |
|- ( -. X e. V -> -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) ) |
21 |
|
clwwlknon0 |
|- ( -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) |
22 |
20 21
|
syl |
|- ( -. X e. V -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) |
23 |
16 22
|
eqtrid |
|- ( -. X e. V -> ( X C 1 ) = (/) ) |
24 |
23
|
adantr |
|- ( ( -. X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) |
25 |
15 24
|
pm2.61ian |
|- ( { X } e/ E -> ( X C 1 ) = (/) ) |