Metamath Proof Explorer


Theorem clwwlknon1nloop

Description: If there is no loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v
|- V = ( Vtx ` G )
clwwlknon1.c
|- C = ( ClWWalksNOn ` G )
clwwlknon1.e
|- E = ( Edg ` G )
Assertion clwwlknon1nloop
|- ( { X } e/ E -> ( X C 1 ) = (/) )

Proof

Step Hyp Ref Expression
1 clwwlknon1.v
 |-  V = ( Vtx ` G )
2 clwwlknon1.c
 |-  C = ( ClWWalksNOn ` G )
3 clwwlknon1.e
 |-  E = ( Edg ` G )
4 1 2 3 clwwlknon1
 |-  ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } )
5 4 adantr
 |-  ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } )
6 df-nel
 |-  ( { X } e/ E <-> -. { X } e. E )
7 6 biimpi
 |-  ( { X } e/ E -> -. { X } e. E )
8 7 olcd
 |-  ( { X } e/ E -> ( -. w = <" X "> \/ -. { X } e. E ) )
9 8 ad2antlr
 |-  ( ( ( X e. V /\ { X } e/ E ) /\ w e. Word V ) -> ( -. w = <" X "> \/ -. { X } e. E ) )
10 ianor
 |-  ( -. ( w = <" X "> /\ { X } e. E ) <-> ( -. w = <" X "> \/ -. { X } e. E ) )
11 9 10 sylibr
 |-  ( ( ( X e. V /\ { X } e/ E ) /\ w e. Word V ) -> -. ( w = <" X "> /\ { X } e. E ) )
12 11 ralrimiva
 |-  ( ( X e. V /\ { X } e/ E ) -> A. w e. Word V -. ( w = <" X "> /\ { X } e. E ) )
13 rabeq0
 |-  ( { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = (/) <-> A. w e. Word V -. ( w = <" X "> /\ { X } e. E ) )
14 12 13 sylibr
 |-  ( ( X e. V /\ { X } e/ E ) -> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = (/) )
15 5 14 eqtrd
 |-  ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) )
16 2 oveqi
 |-  ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 )
17 1 eleq2i
 |-  ( X e. V <-> X e. ( Vtx ` G ) )
18 17 notbii
 |-  ( -. X e. V <-> -. X e. ( Vtx ` G ) )
19 18 biimpi
 |-  ( -. X e. V -> -. X e. ( Vtx ` G ) )
20 19 intnanrd
 |-  ( -. X e. V -> -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) )
21 clwwlknon0
 |-  ( -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) )
22 20 21 syl
 |-  ( -. X e. V -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) )
23 16 22 eqtrid
 |-  ( -. X e. V -> ( X C 1 ) = (/) )
24 23 adantr
 |-  ( ( -. X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) )
25 15 24 pm2.61ian
 |-  ( { X } e/ E -> ( X C 1 ) = (/) )