Metamath Proof Explorer


Theorem clwwlknon1sn

Description: The set of (closed) walks on vertex X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X iff there is a loop at X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022)

Ref Expression
Hypotheses clwwlknon1.v
|- V = ( Vtx ` G )
clwwlknon1.c
|- C = ( ClWWalksNOn ` G )
clwwlknon1.e
|- E = ( Edg ` G )
Assertion clwwlknon1sn
|- ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { X } e. E ) )

Proof

Step Hyp Ref Expression
1 clwwlknon1.v
 |-  V = ( Vtx ` G )
2 clwwlknon1.c
 |-  C = ( ClWWalksNOn ` G )
3 clwwlknon1.e
 |-  E = ( Edg ` G )
4 df-nel
 |-  ( { X } e/ E <-> -. { X } e. E )
5 1 2 3 clwwlknon1nloop
 |-  ( { X } e/ E -> ( X C 1 ) = (/) )
6 5 adantl
 |-  ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) )
7 s1cli
 |-  <" X "> e. Word _V
8 7 elexi
 |-  <" X "> e. _V
9 8 snnz
 |-  { <" X "> } =/= (/)
10 9 nesymi
 |-  -. (/) = { <" X "> }
11 eqeq1
 |-  ( ( X C 1 ) = (/) -> ( ( X C 1 ) = { <" X "> } <-> (/) = { <" X "> } ) )
12 10 11 mtbiri
 |-  ( ( X C 1 ) = (/) -> -. ( X C 1 ) = { <" X "> } )
13 6 12 syl
 |-  ( ( X e. V /\ { X } e/ E ) -> -. ( X C 1 ) = { <" X "> } )
14 13 ex
 |-  ( X e. V -> ( { X } e/ E -> -. ( X C 1 ) = { <" X "> } ) )
15 4 14 syl5bir
 |-  ( X e. V -> ( -. { X } e. E -> -. ( X C 1 ) = { <" X "> } ) )
16 15 con4d
 |-  ( X e. V -> ( ( X C 1 ) = { <" X "> } -> { X } e. E ) )
17 1 2 3 clwwlknon1loop
 |-  ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } )
18 17 ex
 |-  ( X e. V -> ( { X } e. E -> ( X C 1 ) = { <" X "> } ) )
19 16 18 impbid
 |-  ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { X } e. E ) )