Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon1.v |
|- V = ( Vtx ` G ) |
2 |
|
clwwlknon1.c |
|- C = ( ClWWalksNOn ` G ) |
3 |
|
clwwlknon1.e |
|- E = ( Edg ` G ) |
4 |
|
df-nel |
|- ( { X } e/ E <-> -. { X } e. E ) |
5 |
1 2 3
|
clwwlknon1nloop |
|- ( { X } e/ E -> ( X C 1 ) = (/) ) |
6 |
5
|
adantl |
|- ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) |
7 |
|
s1cli |
|- <" X "> e. Word _V |
8 |
7
|
elexi |
|- <" X "> e. _V |
9 |
8
|
snnz |
|- { <" X "> } =/= (/) |
10 |
9
|
nesymi |
|- -. (/) = { <" X "> } |
11 |
|
eqeq1 |
|- ( ( X C 1 ) = (/) -> ( ( X C 1 ) = { <" X "> } <-> (/) = { <" X "> } ) ) |
12 |
10 11
|
mtbiri |
|- ( ( X C 1 ) = (/) -> -. ( X C 1 ) = { <" X "> } ) |
13 |
6 12
|
syl |
|- ( ( X e. V /\ { X } e/ E ) -> -. ( X C 1 ) = { <" X "> } ) |
14 |
13
|
ex |
|- ( X e. V -> ( { X } e/ E -> -. ( X C 1 ) = { <" X "> } ) ) |
15 |
4 14
|
syl5bir |
|- ( X e. V -> ( -. { X } e. E -> -. ( X C 1 ) = { <" X "> } ) ) |
16 |
15
|
con4d |
|- ( X e. V -> ( ( X C 1 ) = { <" X "> } -> { X } e. E ) ) |
17 |
1 2 3
|
clwwlknon1loop |
|- ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } ) |
18 |
17
|
ex |
|- ( X e. V -> ( { X } e. E -> ( X C 1 ) = { <" X "> } ) ) |
19 |
16 18
|
impbid |
|- ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { X } e. E ) ) |