| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( ClWWalksNOn ` G ) = ( ClWWalksNOn ` G ) |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 4 |
1 2 3
|
clwwlknon2x |
|- ( X ( ClWWalksNOn ` G ) 2 ) = { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) } |
| 5 |
4
|
a1i |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( X ( ClWWalksNOn ` G ) 2 ) = { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) } ) |
| 6 |
5
|
fveq2d |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = ( # ` { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) } ) ) |
| 7 |
|
3ancomb |
|- ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = X /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) <-> ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) ) |
| 8 |
7
|
rabbii |
|- { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ ( w ` 0 ) = X /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } = { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) } |
| 9 |
8
|
fveq2i |
|- ( # ` { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ ( w ` 0 ) = X /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = ( # ` { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) } ) |
| 10 |
2
|
rusgrnumwrdl2 |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ ( w ` 0 ) = X /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = K ) |
| 11 |
9 10
|
eqtr3id |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` { w e. Word ( Vtx ` G ) | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( w ` 0 ) = X ) } ) = K ) |
| 12 |
6 11
|
eqtrd |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) |