Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon2.c |
|- C = ( ClWWalksNOn ` G ) |
2 |
|
clwwlknon2x.v |
|- V = ( Vtx ` G ) |
3 |
|
clwwlknon2x.e |
|- E = ( Edg ` G ) |
4 |
1
|
clwwlknon2 |
|- ( X C 2 ) = { w e. ( 2 ClWWalksN G ) | ( w ` 0 ) = X } |
5 |
|
clwwlkn2 |
|- ( w e. ( 2 ClWWalksN G ) <-> ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
6 |
5
|
anbi1i |
|- ( ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) |
7 |
|
3anan12 |
|- ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) <-> ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
8 |
7
|
anbi1i |
|- ( ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) /\ ( w ` 0 ) = X ) ) |
9 |
|
anass |
|- ( ( ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word ( Vtx ` G ) /\ ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) ) |
10 |
2
|
eqcomi |
|- ( Vtx ` G ) = V |
11 |
10
|
wrdeqi |
|- Word ( Vtx ` G ) = Word V |
12 |
11
|
eleq2i |
|- ( w e. Word ( Vtx ` G ) <-> w e. Word V ) |
13 |
|
df-3an |
|- ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E ) /\ ( w ` 0 ) = X ) ) |
14 |
3
|
eleq2i |
|- ( { ( w ` 0 ) , ( w ` 1 ) } e. E <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) |
15 |
14
|
anbi2i |
|- ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E ) <-> ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
16 |
15
|
anbi1i |
|- ( ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E ) /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) |
17 |
13 16
|
bitr2i |
|- ( ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) |
18 |
12 17
|
anbi12i |
|- ( ( w e. Word ( Vtx ` G ) /\ ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) |
19 |
9 18
|
bitri |
|- ( ( ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) |
20 |
8 19
|
bitri |
|- ( ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) |
21 |
6 20
|
bitri |
|- ( ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) |
22 |
21
|
rabbia2 |
|- { w e. ( 2 ClWWalksN G ) | ( w ` 0 ) = X } = { w e. Word V | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) } |
23 |
4 22
|
eqtri |
|- ( X C 2 ) = { w e. Word V | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) } |