Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknonel.v |
|- V = ( Vtx ` G ) |
2 |
|
clwwlknonel.e |
|- E = ( Edg ` G ) |
3 |
1 2
|
isclwwlk |
|- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
4 |
|
simpl |
|- ( ( ( # ` W ) = N /\ W = (/) ) -> ( # ` W ) = N ) |
5 |
|
fveq2 |
|- ( W = (/) -> ( # ` W ) = ( # ` (/) ) ) |
6 |
|
hash0 |
|- ( # ` (/) ) = 0 |
7 |
5 6
|
eqtrdi |
|- ( W = (/) -> ( # ` W ) = 0 ) |
8 |
7
|
adantl |
|- ( ( ( # ` W ) = N /\ W = (/) ) -> ( # ` W ) = 0 ) |
9 |
4 8
|
eqtr3d |
|- ( ( ( # ` W ) = N /\ W = (/) ) -> N = 0 ) |
10 |
9
|
ex |
|- ( ( # ` W ) = N -> ( W = (/) -> N = 0 ) ) |
11 |
10
|
necon3d |
|- ( ( # ` W ) = N -> ( N =/= 0 -> W =/= (/) ) ) |
12 |
11
|
impcom |
|- ( ( N =/= 0 /\ ( # ` W ) = N ) -> W =/= (/) ) |
13 |
12
|
biantrud |
|- ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( W e. Word V <-> ( W e. Word V /\ W =/= (/) ) ) ) |
14 |
13
|
bicomd |
|- ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( ( W e. Word V /\ W =/= (/) ) <-> W e. Word V ) ) |
15 |
14
|
3anbi1d |
|- ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
16 |
3 15
|
syl5bb |
|- ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
17 |
16
|
a1d |
|- ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( ( W ` 0 ) = X -> ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
18 |
17
|
expimpd |
|- ( N =/= 0 -> ( ( ( # ` W ) = N /\ ( W ` 0 ) = X ) -> ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
19 |
18
|
pm5.32rd |
|- ( N =/= 0 -> ( ( W e. ( ClWWalks ` G ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) ) |
20 |
|
isclwwlknon |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) |
21 |
|
isclwwlkn |
|- ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) |
22 |
21
|
anbi1i |
|- ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) /\ ( W ` 0 ) = X ) ) |
23 |
|
anass |
|- ( ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) /\ ( W ` 0 ) = X ) <-> ( W e. ( ClWWalks ` G ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) |
24 |
20 22 23
|
3bitri |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( ClWWalks ` G ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) |
25 |
|
3anass |
|- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N /\ ( W ` 0 ) = X ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) |
26 |
19 24 25
|
3bitr4g |
|- ( N =/= 0 -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) |