Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknonex2.v |
|- V = ( Vtx ` G ) |
2 |
|
clwwlknonex2.e |
|- E = ( Edg ` G ) |
3 |
|
simpl |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> W e. Word V ) |
4 |
3
|
adantr |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> W e. Word V ) |
5 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> i e. NN0 ) |
6 |
5
|
adantl |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> i e. NN0 ) |
7 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
8 |
|
elfzo0 |
|- ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) <-> ( i e. NN0 /\ ( ( # ` W ) - 1 ) e. NN /\ i < ( ( # ` W ) - 1 ) ) ) |
9 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
10 |
9
|
adantr |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> i e. RR ) |
11 |
|
nn0re |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. RR ) |
12 |
|
peano2rem |
|- ( ( # ` W ) e. RR -> ( ( # ` W ) - 1 ) e. RR ) |
13 |
11 12
|
syl |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) e. RR ) |
14 |
13
|
adantl |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( ( # ` W ) - 1 ) e. RR ) |
15 |
11
|
adantl |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( # ` W ) e. RR ) |
16 |
10 14 15
|
3jca |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( i e. RR /\ ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR ) ) |
17 |
11
|
ltm1d |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) < ( # ` W ) ) |
18 |
17
|
adantl |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( ( # ` W ) - 1 ) < ( # ` W ) ) |
19 |
|
lttr |
|- ( ( i e. RR /\ ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR ) -> ( ( i < ( ( # ` W ) - 1 ) /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) -> i < ( # ` W ) ) ) |
20 |
19
|
expcomd |
|- ( ( i e. RR /\ ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR ) -> ( ( ( # ` W ) - 1 ) < ( # ` W ) -> ( i < ( ( # ` W ) - 1 ) -> i < ( # ` W ) ) ) ) |
21 |
16 18 20
|
sylc |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( i < ( ( # ` W ) - 1 ) -> i < ( # ` W ) ) ) |
22 |
21
|
impancom |
|- ( ( i e. NN0 /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> i < ( # ` W ) ) ) |
23 |
22
|
3adant2 |
|- ( ( i e. NN0 /\ ( ( # ` W ) - 1 ) e. NN /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> i < ( # ` W ) ) ) |
24 |
8 23
|
sylbi |
|- ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> i < ( # ` W ) ) ) |
25 |
7 24
|
syl5com |
|- ( W e. Word V -> ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> i < ( # ` W ) ) ) |
26 |
25
|
adantr |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> i < ( # ` W ) ) ) |
27 |
26
|
imp |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> i < ( # ` W ) ) |
28 |
|
ccat2s1fvw |
|- ( ( W e. Word V /\ i e. NN0 /\ i < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( W ` i ) ) |
29 |
4 6 27 28
|
syl3anc |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( W ` i ) ) |
30 |
29
|
eqcomd |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` i ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) ) |
31 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
32 |
6 31
|
syl |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( i + 1 ) e. NN0 ) |
33 |
|
1red |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> 1 e. RR ) |
34 |
10 33 15
|
ltaddsubd |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( ( i + 1 ) < ( # ` W ) <-> i < ( ( # ` W ) - 1 ) ) ) |
35 |
34
|
biimprd |
|- ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( i < ( ( # ` W ) - 1 ) -> ( i + 1 ) < ( # ` W ) ) ) |
36 |
35
|
impancom |
|- ( ( i e. NN0 /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> ( i + 1 ) < ( # ` W ) ) ) |
37 |
36
|
3adant2 |
|- ( ( i e. NN0 /\ ( ( # ` W ) - 1 ) e. NN /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> ( i + 1 ) < ( # ` W ) ) ) |
38 |
8 37
|
sylbi |
|- ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> ( i + 1 ) < ( # ` W ) ) ) |
39 |
7 38
|
mpan9 |
|- ( ( W e. Word V /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( i + 1 ) < ( # ` W ) ) |
40 |
39
|
adantlr |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( i + 1 ) < ( # ` W ) ) |
41 |
|
ccat2s1fvw |
|- ( ( W e. Word V /\ ( i + 1 ) e. NN0 /\ ( i + 1 ) < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) |
42 |
4 32 40 41
|
syl3anc |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) |
43 |
42
|
eqcomd |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` ( i + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) ) |
44 |
30 43
|
preq12d |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } ) |
45 |
44
|
eleq1d |
|- ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
46 |
45
|
ralbidva |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
47 |
46
|
biimpd |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
48 |
47
|
impancom |
|- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
49 |
48
|
3adant3 |
|- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
50 |
49
|
3ad2ant1 |
|- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ Y e. V ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
51 |
50
|
com12 |
|- ( ( X e. V /\ Y e. V ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
52 |
51
|
a1dd |
|- ( ( X e. V /\ Y e. V ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) ) |
53 |
52
|
3adant3 |
|- ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) ) |
54 |
53
|
imp31 |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) |
55 |
|
ax-1 |
|- ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> ( X e. V /\ Y e. V ) ) ) |
56 |
55
|
3adant3 |
|- ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> ( X e. V /\ Y e. V ) ) ) |
57 |
|
simpl |
|- ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> W e. Word V ) |
58 |
|
oveq1 |
|- ( ( # ` W ) = ( N - 2 ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) |
59 |
58
|
adantr |
|- ( ( ( # ` W ) = ( N - 2 ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) |
60 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. CC ) |
61 |
|
2cnd |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) |
62 |
|
1cnd |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. CC ) |
63 |
60 61 62
|
subsub4d |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) = ( N - ( 2 + 1 ) ) ) |
64 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
65 |
64
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> ( 2 + 1 ) = 3 ) |
66 |
65
|
oveq2d |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - ( 2 + 1 ) ) = ( N - 3 ) ) |
67 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 3 ) e. NN0 ) |
68 |
66 67
|
eqeltrd |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - ( 2 + 1 ) ) e. NN0 ) |
69 |
63 68
|
eqeltrd |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) e. NN0 ) |
70 |
69
|
adantl |
|- ( ( ( # ` W ) = ( N - 2 ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( N - 2 ) - 1 ) e. NN0 ) |
71 |
59 70
|
eqeltrd |
|- ( ( ( # ` W ) = ( N - 2 ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
72 |
71
|
ancoms |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
73 |
72
|
adantl |
|- ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
74 |
7 11
|
syl |
|- ( W e. Word V -> ( # ` W ) e. RR ) |
75 |
74
|
adantr |
|- ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( # ` W ) e. RR ) |
76 |
75
|
ltm1d |
|- ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( # ` W ) - 1 ) < ( # ` W ) ) |
77 |
57 73 76
|
3jca |
|- ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) |
78 |
77
|
ex |
|- ( W e. Word V -> ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) |
79 |
78
|
adantr |
|- ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) |
80 |
79
|
3ad2ant1 |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) |
81 |
80
|
imp |
|- ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) |
82 |
|
ccat2s1fvw |
|- ( ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
83 |
81 82
|
syl |
|- ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
84 |
|
nn0cn |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) |
85 |
|
ax-1cn |
|- 1 e. CC |
86 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ 1 e. CC ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
87 |
84 85 86
|
sylancl |
|- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
88 |
7 87
|
syl |
|- ( W e. Word V -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
89 |
88
|
adantr |
|- ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
90 |
89
|
3ad2ant1 |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
91 |
90
|
fveq2d |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) ) |
92 |
|
simp1l |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> W e. Word V ) |
93 |
|
eqidd |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( # ` W ) = ( # ` W ) ) |
94 |
|
simp2l |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> X e. V ) |
95 |
|
ccatw2s1p1 |
|- ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ X e. V ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) = X ) |
96 |
92 93 94 95
|
syl3anc |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) = X ) |
97 |
91 96
|
eqtrd |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) = X ) |
98 |
97
|
adantr |
|- ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) = X ) |
99 |
83 98
|
preq12d |
|- ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } = { ( W ` ( ( # ` W ) - 1 ) ) , X } ) |
100 |
|
lsw |
|- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
101 |
100
|
adantl |
|- ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
102 |
|
simpl |
|- ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( W ` 0 ) = X ) |
103 |
101 102
|
preq12d |
|- ( ( ( W ` 0 ) = X /\ W e. Word V ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` ( ( # ` W ) - 1 ) ) , X } ) |
104 |
103
|
eleq1d |
|- ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E <-> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) |
105 |
104
|
biimpd |
|- ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) |
106 |
105
|
expcom |
|- ( W e. Word V -> ( ( W ` 0 ) = X -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) ) |
107 |
106
|
com23 |
|- ( W e. Word V -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E -> ( ( W ` 0 ) = X -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) ) |
108 |
107
|
imp31 |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( W ` 0 ) = X ) -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) |
109 |
108
|
3adant2 |
|- ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) |
110 |
109
|
adantr |
|- ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) |
111 |
99 110
|
eqeltrd |
|- ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) |
112 |
111
|
exp520 |
|- ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> ( ( W ` 0 ) = X -> ( N e. ( ZZ>= ` 3 ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
113 |
112
|
com14 |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( X e. V /\ Y e. V ) -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
114 |
113
|
3ad2ant3 |
|- ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( X e. V /\ Y e. V ) -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
115 |
56 114
|
syld |
|- ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
116 |
115
|
com25 |
|- ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
117 |
116
|
com14 |
|- ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( W ` 0 ) = X -> ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
118 |
117
|
3adant2 |
|- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( W ` 0 ) = X -> ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) |
119 |
118
|
3imp |
|- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) |
120 |
119
|
impcom |
|- ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) |
121 |
120
|
imp |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) |
122 |
|
eqidd |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( # ` W ) = ( # ` W ) ) |
123 |
|
simprl |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> X e. V ) |
124 |
3 122 123 95
|
syl3anc |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) = X ) |
125 |
|
eqid |
|- ( # ` W ) = ( # ` W ) |
126 |
|
ccatw2s1p2 |
|- ( ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) = Y ) |
127 |
125 126
|
mpanl2 |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) = Y ) |
128 |
124 127
|
preq12d |
|- ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) |
129 |
128
|
expcom |
|- ( ( X e. V /\ Y e. V ) -> ( W e. Word V -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) |
130 |
129
|
a1i |
|- ( { X , Y } e. E -> ( ( X e. V /\ Y e. V ) -> ( W e. Word V -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) |
131 |
130
|
com13 |
|- ( W e. Word V -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) |
132 |
131
|
3ad2ant1 |
|- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) |
133 |
132
|
3ad2ant1 |
|- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) |
134 |
133
|
com12 |
|- ( ( X e. V /\ Y e. V ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) |
135 |
134
|
3adant3 |
|- ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) |
136 |
135
|
imp31 |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) |
137 |
|
simpr |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { X , Y } e. E ) |
138 |
136 137
|
eqeltrd |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } e. E ) |
139 |
|
ovex |
|- ( ( # ` W ) - 1 ) e. _V |
140 |
|
fvex |
|- ( # ` W ) e. _V |
141 |
|
fveq2 |
|- ( i = ( ( # ` W ) - 1 ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) ) |
142 |
|
fvoveq1 |
|- ( i = ( ( # ` W ) - 1 ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) ) |
143 |
141 142
|
preq12d |
|- ( i = ( ( # ` W ) - 1 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } = { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } ) |
144 |
143
|
eleq1d |
|- ( i = ( ( # ` W ) - 1 ) -> ( { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) |
145 |
|
fveq2 |
|- ( i = ( # ` W ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) ) |
146 |
|
fvoveq1 |
|- ( i = ( # ` W ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) ) |
147 |
145 146
|
preq12d |
|- ( i = ( # ` W ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } = { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } ) |
148 |
147
|
eleq1d |
|- ( i = ( # ` W ) -> ( { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } e. E ) ) |
149 |
139 140 144 148
|
ralpr |
|- ( A. i e. { ( ( # ` W ) - 1 ) , ( # ` W ) } { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> ( { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E /\ { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } e. E ) ) |
150 |
121 138 149
|
sylanbrc |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> A. i e. { ( ( # ` W ) - 1 ) , ( # ` W ) } { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) |
151 |
|
ralunb |
|- ( A. i e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E /\ A. i e. { ( ( # ` W ) - 1 ) , ( # ` W ) } { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) |
152 |
54 150 151
|
sylanbrc |
|- ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> A. i e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) |