Metamath Proof Explorer


Theorem clwwlknonfin

Description: In a finite graph G , the set of closed walks on vertex X of length N is also finite. (Contributed by Alexander van der Vekens, 26-Sep-2018) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 24-Mar-2022)

Ref Expression
Hypothesis clwwlknonfin.v
|- V = ( Vtx ` G )
Assertion clwwlknonfin
|- ( V e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin )

Proof

Step Hyp Ref Expression
1 clwwlknonfin.v
 |-  V = ( Vtx ` G )
2 clwwlknon
 |-  ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X }
3 1 eleq1i
 |-  ( V e. Fin <-> ( Vtx ` G ) e. Fin )
4 clwwlknfi
 |-  ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin )
5 3 4 sylbi
 |-  ( V e. Fin -> ( N ClWWalksN G ) e. Fin )
6 rabfi
 |-  ( ( N ClWWalksN G ) e. Fin -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. Fin )
7 5 6 syl
 |-  ( V e. Fin -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. Fin )
8 2 7 eqeltrid
 |-  ( V e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin )