| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknonfin.v |
|- V = ( Vtx ` G ) |
| 2 |
|
clwwlknon |
|- ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } |
| 3 |
1
|
eleq1i |
|- ( V e. Fin <-> ( Vtx ` G ) e. Fin ) |
| 4 |
|
clwwlknfi |
|- ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) |
| 5 |
3 4
|
sylbi |
|- ( V e. Fin -> ( N ClWWalksN G ) e. Fin ) |
| 6 |
|
rabfi |
|- ( ( N ClWWalksN G ) e. Fin -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. Fin ) |
| 7 |
5 6
|
syl |
|- ( V e. Fin -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. Fin ) |
| 8 |
2 7
|
eqeltrid |
|- ( V e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) |