Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknonwwlknonb.v |
|- V = ( Vtx ` G ) |
2 |
|
isclwwlknon |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) |
3 |
|
3anan32 |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) |
4 |
|
s1eq |
|- ( ( W ` 0 ) = X -> <" ( W ` 0 ) "> = <" X "> ) |
5 |
4
|
oveq2d |
|- ( ( W ` 0 ) = X -> ( W ++ <" ( W ` 0 ) "> ) = ( W ++ <" X "> ) ) |
6 |
5
|
eleq1d |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) <-> ( W ++ <" X "> ) e. ( N WWalksN G ) ) ) |
7 |
6
|
biimpac |
|- ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ++ <" X "> ) e. ( N WWalksN G ) ) |
8 |
7
|
adantl |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ++ <" X "> ) e. ( N WWalksN G ) ) |
9 |
|
fvex |
|- ( W ` 0 ) e. _V |
10 |
|
eleq1 |
|- ( ( W ` 0 ) = X -> ( ( W ` 0 ) e. _V <-> X e. _V ) ) |
11 |
9 10
|
mpbii |
|- ( ( W ` 0 ) = X -> X e. _V ) |
12 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
13 |
1 12
|
wwlknp |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
14 |
|
simprrl |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> W e. Word V ) |
15 |
|
simpl |
|- ( ( W e. Word V /\ N e. NN ) -> W e. Word V ) |
16 |
15
|
anim2i |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( X e. _V /\ W e. Word V ) ) |
17 |
16
|
ancomd |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. _V ) ) |
18 |
|
ccats1alpha |
|- ( ( W e. Word V /\ X e. _V ) -> ( ( W ++ <" X "> ) e. Word V <-> ( W e. Word V /\ X e. V ) ) ) |
19 |
17 18
|
syl |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) e. Word V <-> ( W e. Word V /\ X e. V ) ) ) |
20 |
|
simpr |
|- ( ( W e. Word V /\ X e. V ) -> X e. V ) |
21 |
19 20
|
syl6bi |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) e. Word V -> X e. V ) ) |
22 |
21
|
com12 |
|- ( ( W ++ <" X "> ) e. Word V -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> X e. V ) ) |
23 |
22
|
adantr |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> X e. V ) ) |
24 |
23
|
imp |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> X e. V ) |
25 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
26 |
|
ccatws1lenp1b |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
27 |
25 26
|
sylan2 |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
28 |
27
|
biimpd |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) |
29 |
28
|
adantl |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) |
30 |
29
|
com12 |
|- ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) ) |
31 |
30
|
adantl |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) ) |
32 |
31
|
imp |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> ( # ` W ) = N ) |
33 |
32
|
eqcomd |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> N = ( # ` W ) ) |
34 |
14 24 33
|
3jca |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) |
35 |
34
|
ex |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) |
36 |
35
|
3adant3 |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) |
37 |
13 36
|
syl |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) |
38 |
37
|
expd |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( X e. _V -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
39 |
11 38
|
syl5com |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
40 |
6 39
|
sylbid |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
41 |
40
|
com13 |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) -> ( ( W ` 0 ) = X -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
42 |
41
|
imp32 |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) |
43 |
|
ccats1val2 |
|- ( ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
44 |
42 43
|
syl |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
45 |
|
ccat1st1st |
|- ( W e. Word V -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
46 |
45
|
adantr |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
47 |
5
|
fveq1d |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( ( W ++ <" X "> ) ` 0 ) ) |
48 |
47
|
eqeq1d |
|- ( ( W ` 0 ) = X -> ( ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) |
49 |
48
|
adantl |
|- ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) |
50 |
46 49
|
syl5ibcom |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) |
51 |
50
|
imp |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
52 |
|
simprr |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ` 0 ) = X ) |
53 |
51 52
|
eqtrd |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` 0 ) = X ) |
54 |
8 44 53
|
jca31 |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) |
55 |
54
|
ex |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) ) |
56 |
|
simprl |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> W e. Word V ) |
57 |
27
|
biimpcd |
|- ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( ( W e. Word V /\ N e. NN ) -> ( # ` W ) = N ) ) |
58 |
57
|
adantl |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( # ` W ) = N ) ) |
59 |
58
|
imp |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) |
60 |
59
|
eqcomd |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> N = ( # ` W ) ) |
61 |
56 60
|
jca |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ N = ( # ` W ) ) ) |
62 |
61
|
ex |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) |
63 |
62
|
3adant3 |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) |
64 |
13 63
|
syl |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) |
65 |
64
|
imp |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ N = ( # ` W ) ) ) |
66 |
|
eleq1 |
|- ( N = ( # ` W ) -> ( N e. NN <-> ( # ` W ) e. NN ) ) |
67 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) |
68 |
67
|
biimpri |
|- ( ( # ` W ) e. NN -> 0 e. ( 0 ..^ ( # ` W ) ) ) |
69 |
66 68
|
syl6bi |
|- ( N = ( # ` W ) -> ( N e. NN -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
70 |
69
|
com12 |
|- ( N e. NN -> ( N = ( # ` W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
71 |
70
|
ad2antll |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( N = ( # ` W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
72 |
71
|
anim2d |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W e. Word V /\ N = ( # ` W ) ) -> ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) ) |
73 |
65 72
|
mpd |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
74 |
|
ccats1val1 |
|- ( ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
75 |
73 74
|
syl |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
76 |
75
|
eqeq1d |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X <-> ( W ` 0 ) = X ) ) |
77 |
76
|
biimpd |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) |
78 |
77
|
ex |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) ) |
79 |
78
|
adantr |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) ) |
80 |
79
|
com3r |
|- ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( W ` 0 ) = X ) ) ) |
81 |
80
|
impcom |
|- ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( W ` 0 ) = X ) ) |
82 |
6
|
biimparc |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) |
83 |
|
simpr |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) |
84 |
82 83
|
jca |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) |
85 |
84
|
ex |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
86 |
85
|
ad2antrr |
|- ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
87 |
81 86
|
syldc |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
88 |
55 87
|
impbid |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) ) |
89 |
3 88
|
bitr4id |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
90 |
1
|
clwwlknwwlksnb |
|- ( ( W e. Word V /\ N e. NN ) -> ( W e. ( N ClWWalksN G ) <-> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) ) |
91 |
90
|
anbi1d |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
92 |
89 91
|
bitr4d |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
93 |
2 92
|
bitr4id |
|- ( ( W e. Word V /\ N e. NN ) -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) ) ) |
94 |
|
wwlknon |
|- ( ( W ++ <" X "> ) e. ( X ( N WWalksNOn G ) X ) <-> ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) ) |
95 |
93 94
|
bitr4di |
|- ( ( W e. Word V /\ N e. NN ) -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W ++ <" X "> ) e. ( X ( N WWalksNOn G ) X ) ) ) |