| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( y = x -> ( y = ( W cyclShift n ) <-> x = ( W cyclShift n ) ) ) |
| 2 |
1
|
rexbidv |
|- ( y = x -> ( E. n e. ( 0 ... N ) y = ( W cyclShift n ) <-> E. n e. ( 0 ... N ) x = ( W cyclShift n ) ) ) |
| 3 |
2
|
cbvrabv |
|- { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } = { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } |
| 4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 5 |
4
|
clwwlknwrd |
|- ( w e. ( N ClWWalksN G ) -> w e. Word ( Vtx ` G ) ) |
| 6 |
5
|
ad2antrl |
|- ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> w e. Word ( Vtx ` G ) ) |
| 7 |
|
simprr |
|- ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) |
| 8 |
6 7
|
jca |
|- ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) |
| 9 |
|
simprr |
|- ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) -> W e. ( N ClWWalksN G ) ) |
| 10 |
|
simpllr |
|- ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> n e. ( 0 ... N ) ) |
| 11 |
|
clwwnisshclwwsn |
|- ( ( W e. ( N ClWWalksN G ) /\ n e. ( 0 ... N ) ) -> ( W cyclShift n ) e. ( N ClWWalksN G ) ) |
| 12 |
9 10 11
|
syl2an2r |
|- ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> ( W cyclShift n ) e. ( N ClWWalksN G ) ) |
| 13 |
|
eleq1 |
|- ( w = ( W cyclShift n ) -> ( w e. ( N ClWWalksN G ) <-> ( W cyclShift n ) e. ( N ClWWalksN G ) ) ) |
| 14 |
13
|
adantl |
|- ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> ( w e. ( N ClWWalksN G ) <-> ( W cyclShift n ) e. ( N ClWWalksN G ) ) ) |
| 15 |
12 14
|
mpbird |
|- ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> w e. ( N ClWWalksN G ) ) |
| 16 |
15
|
exp31 |
|- ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> ( w = ( W cyclShift n ) -> w e. ( N ClWWalksN G ) ) ) ) |
| 17 |
16
|
com23 |
|- ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) -> ( w = ( W cyclShift n ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> w e. ( N ClWWalksN G ) ) ) ) |
| 18 |
17
|
rexlimdva |
|- ( w e. Word ( Vtx ` G ) -> ( E. n e. ( 0 ... N ) w = ( W cyclShift n ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> w e. ( N ClWWalksN G ) ) ) ) |
| 19 |
18
|
imp |
|- ( ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> w e. ( N ClWWalksN G ) ) ) |
| 20 |
19
|
impcom |
|- ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> w e. ( N ClWWalksN G ) ) |
| 21 |
|
simprr |
|- ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) |
| 22 |
20 21
|
jca |
|- ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) |
| 23 |
8 22
|
impbida |
|- ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> ( ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) <-> ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) ) |
| 24 |
|
eqeq1 |
|- ( x = w -> ( x = ( W cyclShift n ) <-> w = ( W cyclShift n ) ) ) |
| 25 |
24
|
rexbidv |
|- ( x = w -> ( E. n e. ( 0 ... N ) x = ( W cyclShift n ) <-> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) |
| 26 |
25
|
elrab |
|- ( w e. { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } <-> ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) |
| 27 |
|
eqeq1 |
|- ( y = w -> ( y = ( W cyclShift n ) <-> w = ( W cyclShift n ) ) ) |
| 28 |
27
|
rexbidv |
|- ( y = w -> ( E. n e. ( 0 ... N ) y = ( W cyclShift n ) <-> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) |
| 29 |
28
|
elrab |
|- ( w e. { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } <-> ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) |
| 30 |
23 26 29
|
3bitr4g |
|- ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> ( w e. { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } <-> w e. { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } ) ) |
| 31 |
30
|
eqrdv |
|- ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } ) |
| 32 |
3 31
|
eqtrid |
|- ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } ) |