Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknnn |
|- ( W e. ( N ClWWalksN G ) -> N e. NN ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
clwwlknbp |
|- ( W e. ( N ClWWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) ) |
4 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
5 |
2 4
|
clwwlknp |
|- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
6 |
|
3simpc |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
7 |
5 6
|
syl |
|- ( W e. ( N ClWWalksN G ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
8 |
|
eqid |
|- { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
9 |
8
|
clwwlkel |
|- ( ( N e. NN /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) -> ( W ++ <" ( W ` 0 ) "> ) e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ) |
10 |
1 3 7 9
|
syl3anc |
|- ( W e. ( N ClWWalksN G ) -> ( W ++ <" ( W ` 0 ) "> ) e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ) |