| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkwwlksb.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 3 |  | ccatws1lenp1b |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( N + 1 ) ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` W ) = N ) ) ) | 
						
							| 6 |  | simpl |  |-  ( ( W e. Word V /\ N e. NN ) -> W e. Word V ) | 
						
							| 7 |  | eleq1 |  |-  ( ( # ` W ) = N -> ( ( # ` W ) e. NN <-> N e. NN ) ) | 
						
							| 8 |  | len0nnbi |  |-  ( W e. Word V -> ( W =/= (/) <-> ( # ` W ) e. NN ) ) | 
						
							| 9 | 8 | biimprcd |  |-  ( ( # ` W ) e. NN -> ( W e. Word V -> W =/= (/) ) ) | 
						
							| 10 | 7 9 | biimtrrdi |  |-  ( ( # ` W ) = N -> ( N e. NN -> ( W e. Word V -> W =/= (/) ) ) ) | 
						
							| 11 | 10 | com13 |  |-  ( W e. Word V -> ( N e. NN -> ( ( # ` W ) = N -> W =/= (/) ) ) ) | 
						
							| 12 | 11 | imp31 |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( # ` W ) = N ) -> W =/= (/) ) | 
						
							| 13 | 1 | clwwlkwwlksb |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( W e. ( ClWWalks ` G ) <-> ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) ) ) | 
						
							| 14 | 6 12 13 | syl2an2r |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( # ` W ) = N ) -> ( W e. ( ClWWalks ` G ) <-> ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) ) ) | 
						
							| 15 | 14 | bicomd |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( # ` W ) = N ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) <-> W e. ( ClWWalks ` G ) ) ) | 
						
							| 16 | 15 | ex |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( # ` W ) = N -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) <-> W e. ( ClWWalks ` G ) ) ) ) | 
						
							| 17 | 16 | pm5.32rd |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` W ) = N ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) ) | 
						
							| 18 | 5 17 | bitrd |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( N + 1 ) ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) ) | 
						
							| 19 | 2 | adantl |  |-  ( ( W e. Word V /\ N e. NN ) -> N e. NN0 ) | 
						
							| 20 |  | iswwlksn |  |-  ( N e. NN0 -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 22 |  | isclwwlkn |  |-  ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) | 
						
							| 23 | 22 | a1i |  |-  ( ( W e. Word V /\ N e. NN ) -> ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) ) | 
						
							| 24 | 18 21 23 | 3bitr4rd |  |-  ( ( W e. Word V /\ N e. NN ) -> ( W e. ( N ClWWalksN G ) <-> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) ) |