Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> N e. ( ZZ>= ` 3 ) ) |
2 |
|
isclwwlknon |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) |
3 |
2
|
simplbi |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) -> W e. ( N ClWWalksN G ) ) |
4 |
3
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> W e. ( N ClWWalksN G ) ) |
5 |
|
simpr |
|- ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) |
6 |
5
|
eqcomd |
|- ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> X = ( W ` 0 ) ) |
7 |
2 6
|
sylbi |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) -> X = ( W ` 0 ) ) |
8 |
7
|
eqeq2d |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( W ` ( N - 2 ) ) = X <-> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) ) |
9 |
8
|
biimpa |
|- ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) |
10 |
9
|
3adant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) |
11 |
|
clwwnrepclwwn |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |
12 |
1 4 10 11
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |
13 |
|
2clwwlklem |
|- ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) |
14 |
3 13
|
sylan |
|- ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) |
15 |
14
|
ancoms |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) |
16 |
15
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) |
17 |
2
|
simprbi |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( W ` 0 ) = X ) |
18 |
17
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` 0 ) = X ) |
19 |
16 18
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = X ) |
20 |
|
isclwwlknon |
|- ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( W prefix ( N - 2 ) ) ` 0 ) = X ) ) |
21 |
12 19 20
|
sylanbrc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |