| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> N e. ( ZZ>= ` 3 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							isclwwlknon | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							simplbi | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> W e. ( N ClWWalksN G ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> W e. ( N ClWWalksN G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqcomd | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> X = ( W ` 0 ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							sylbi | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> X = ( W ` 0 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq2d | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( W ` ( N - 2 ) ) = X <-> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpa | 
							 |-  ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3adant1 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							clwwnrepclwwn | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) )  | 
						
						
							| 12 | 
							
								1 4 10 11
							 | 
							syl3anc | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) )  | 
						
						
							| 13 | 
							
								
							 | 
							2clwwlklem | 
							 |-  ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							sylan | 
							 |-  ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ancoms | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3adant3 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) )  | 
						
						
							| 17 | 
							
								2
							 | 
							simprbi | 
							 |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( W ` 0 ) = X )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` 0 ) = X )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqtrd | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = X )  | 
						
						
							| 20 | 
							
								
							 | 
							isclwwlknon | 
							 |-  ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( W prefix ( N - 2 ) ) ` 0 ) = X ) )  | 
						
						
							| 21 | 
							
								12 19 20
							 | 
							sylanbrc | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) )  |