Step |
Hyp |
Ref |
Expression |
1 |
|
uz3m2nn |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |
2 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
3 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
4 |
|
subeluzsub |
|- ( ( N e. ZZ /\ 2 e. ( ZZ>= ` 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) |
5 |
2 3 4
|
sylancl |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) |
6 |
1 5
|
jca |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) ) |
8 |
|
clwwlknwwlksn |
|- ( W e. ( N ClWWalksN G ) -> W e. ( ( N - 1 ) WWalksN G ) ) |
9 |
8
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> W e. ( ( N - 1 ) WWalksN G ) ) |
10 |
|
simp3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) |
11 |
|
clwwlkinwwlk |
|- ( ( ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) /\ W e. ( ( N - 1 ) WWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |
12 |
7 9 10 11
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |