| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uz3m2nn | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzelz | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							2eluzge1 | 
							 |-  2 e. ( ZZ>= ` 1 )  | 
						
						
							| 4 | 
							
								
							 | 
							subeluzsub | 
							 |-  ( ( N e. ZZ /\ 2 e. ( ZZ>= ` 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylancl | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							jca | 
							 |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							clwwlknwwlksn | 
							 |-  ( W e. ( N ClWWalksN G ) -> W e. ( ( N - 1 ) WWalksN G ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> W e. ( ( N - 1 ) WWalksN G ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							clwwlkinwwlk | 
							 |-  ( ( ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) /\ W e. ( ( N - 1 ) WWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) )  | 
						
						
							| 12 | 
							
								7 9 10 11
							 | 
							syl3anc | 
							 |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) )  |