Step |
Hyp |
Ref |
Expression |
1 |
|
h0elch |
|- 0H e. CH |
2 |
1
|
choccli |
|- ( _|_ ` 0H ) e. CH |
3 |
|
chjcl |
|- ( ( ( _|_ ` 0H ) e. CH /\ A e. CH ) -> ( ( _|_ ` 0H ) vH A ) e. CH ) |
4 |
2 3
|
mpan |
|- ( A e. CH -> ( ( _|_ ` 0H ) vH A ) e. CH ) |
5 |
|
chm0 |
|- ( ( ( _|_ ` 0H ) vH A ) e. CH -> ( ( ( _|_ ` 0H ) vH A ) i^i 0H ) = 0H ) |
6 |
4 5
|
syl |
|- ( A e. CH -> ( ( ( _|_ ` 0H ) vH A ) i^i 0H ) = 0H ) |
7 |
|
chm0 |
|- ( A e. CH -> ( A i^i 0H ) = 0H ) |
8 |
6 7
|
eqtr4d |
|- ( A e. CH -> ( ( ( _|_ ` 0H ) vH A ) i^i 0H ) = ( A i^i 0H ) ) |
9 |
|
incom |
|- ( 0H i^i ( ( _|_ ` 0H ) vH A ) ) = ( ( ( _|_ ` 0H ) vH A ) i^i 0H ) |
10 |
|
incom |
|- ( 0H i^i A ) = ( A i^i 0H ) |
11 |
8 9 10
|
3eqtr4g |
|- ( A e. CH -> ( 0H i^i ( ( _|_ ` 0H ) vH A ) ) = ( 0H i^i A ) ) |
12 |
|
cmbr3 |
|- ( ( 0H e. CH /\ A e. CH ) -> ( 0H C_H A <-> ( 0H i^i ( ( _|_ ` 0H ) vH A ) ) = ( 0H i^i A ) ) ) |
13 |
1 12
|
mpan |
|- ( A e. CH -> ( 0H C_H A <-> ( 0H i^i ( ( _|_ ` 0H ) vH A ) ) = ( 0H i^i A ) ) ) |
14 |
11 13
|
mpbird |
|- ( A e. CH -> 0H C_H A ) |