| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmcm |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> B C_H A ) ) |
| 2 |
|
cmbr |
|- ( ( B e. CH /\ A e. CH ) -> ( B C_H A <-> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) ) |
| 3 |
2
|
ancoms |
|- ( ( A e. CH /\ B e. CH ) -> ( B C_H A <-> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) ) |
| 4 |
1 3
|
bitrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) ) |
| 5 |
4
|
biimpa |
|- ( ( ( A e. CH /\ B e. CH ) /\ A C_H B ) -> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) |
| 6 |
|
incom |
|- ( B i^i A ) = ( A i^i B ) |
| 7 |
|
incom |
|- ( B i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i B ) |
| 8 |
6 7
|
oveq12i |
|- ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) |
| 9 |
5 8
|
eqtrdi |
|- ( ( ( A e. CH /\ B e. CH ) /\ A C_H B ) -> B = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) ) |
| 10 |
9
|
3adantl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_H B ) -> B = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) ) |
| 11 |
10
|
adantrr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> B = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) ) |
| 12 |
|
cmcm |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> C C_H A ) ) |
| 13 |
|
cmbr |
|- ( ( C e. CH /\ A e. CH ) -> ( C C_H A <-> C = ( ( C i^i A ) vH ( C i^i ( _|_ ` A ) ) ) ) ) |
| 14 |
13
|
ancoms |
|- ( ( A e. CH /\ C e. CH ) -> ( C C_H A <-> C = ( ( C i^i A ) vH ( C i^i ( _|_ ` A ) ) ) ) ) |
| 15 |
12 14
|
bitrd |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> C = ( ( C i^i A ) vH ( C i^i ( _|_ ` A ) ) ) ) ) |
| 16 |
15
|
biimpa |
|- ( ( ( A e. CH /\ C e. CH ) /\ A C_H C ) -> C = ( ( C i^i A ) vH ( C i^i ( _|_ ` A ) ) ) ) |
| 17 |
|
incom |
|- ( C i^i A ) = ( A i^i C ) |
| 18 |
|
incom |
|- ( C i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i C ) |
| 19 |
17 18
|
oveq12i |
|- ( ( C i^i A ) vH ( C i^i ( _|_ ` A ) ) ) = ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) |
| 20 |
16 19
|
eqtrdi |
|- ( ( ( A e. CH /\ C e. CH ) /\ A C_H C ) -> C = ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) |
| 21 |
20
|
3adantl2 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_H C ) -> C = ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) |
| 22 |
21
|
adantrl |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> C = ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) |
| 23 |
11 22
|
oveq12d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( B vH C ) = ( ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) vH ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) ) |
| 24 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
| 25 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 26 |
|
chincl |
|- ( ( ( _|_ ` A ) e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i B ) e. CH ) |
| 27 |
25 26
|
sylan |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i B ) e. CH ) |
| 28 |
24 27
|
jca |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) e. CH /\ ( ( _|_ ` A ) i^i B ) e. CH ) ) |
| 29 |
|
chincl |
|- ( ( A e. CH /\ C e. CH ) -> ( A i^i C ) e. CH ) |
| 30 |
|
chincl |
|- ( ( ( _|_ ` A ) e. CH /\ C e. CH ) -> ( ( _|_ ` A ) i^i C ) e. CH ) |
| 31 |
25 30
|
sylan |
|- ( ( A e. CH /\ C e. CH ) -> ( ( _|_ ` A ) i^i C ) e. CH ) |
| 32 |
29 31
|
jca |
|- ( ( A e. CH /\ C e. CH ) -> ( ( A i^i C ) e. CH /\ ( ( _|_ ` A ) i^i C ) e. CH ) ) |
| 33 |
|
chj4 |
|- ( ( ( ( A i^i B ) e. CH /\ ( ( _|_ ` A ) i^i B ) e. CH ) /\ ( ( A i^i C ) e. CH /\ ( ( _|_ ` A ) i^i C ) e. CH ) ) -> ( ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) vH ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) = ( ( ( A i^i B ) vH ( A i^i C ) ) vH ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) ) |
| 34 |
28 32 33
|
syl2an |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) vH ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) = ( ( ( A i^i B ) vH ( A i^i C ) ) vH ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) ) |
| 35 |
34
|
3impdi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) vH ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) = ( ( ( A i^i B ) vH ( A i^i C ) ) vH ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) vH ( ( A i^i C ) vH ( ( _|_ ` A ) i^i C ) ) ) = ( ( ( A i^i B ) vH ( A i^i C ) ) vH ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) ) |
| 37 |
|
fh1 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( A i^i ( B vH C ) ) = ( ( A i^i B ) vH ( A i^i C ) ) ) |
| 38 |
|
incom |
|- ( A i^i ( B vH C ) ) = ( ( B vH C ) i^i A ) |
| 39 |
37 38
|
eqtr3di |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( ( B vH C ) i^i A ) ) |
| 40 |
25
|
3anim1i |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( _|_ ` A ) e. CH /\ B e. CH /\ C e. CH ) ) |
| 41 |
40
|
adantr |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( _|_ ` A ) e. CH /\ B e. CH /\ C e. CH ) ) |
| 42 |
|
cmcm3 |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( _|_ ` A ) C_H B ) ) |
| 43 |
42
|
3adant3 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A C_H B <-> ( _|_ ` A ) C_H B ) ) |
| 44 |
|
cmcm3 |
|- ( ( A e. CH /\ C e. CH ) -> ( A C_H C <-> ( _|_ ` A ) C_H C ) ) |
| 45 |
44
|
3adant2 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A C_H C <-> ( _|_ ` A ) C_H C ) ) |
| 46 |
43 45
|
anbi12d |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_H B /\ A C_H C ) <-> ( ( _|_ ` A ) C_H B /\ ( _|_ ` A ) C_H C ) ) ) |
| 47 |
46
|
biimpa |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( _|_ ` A ) C_H B /\ ( _|_ ` A ) C_H C ) ) |
| 48 |
|
fh1 |
|- ( ( ( ( _|_ ` A ) e. CH /\ B e. CH /\ C e. CH ) /\ ( ( _|_ ` A ) C_H B /\ ( _|_ ` A ) C_H C ) ) -> ( ( _|_ ` A ) i^i ( B vH C ) ) = ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) |
| 49 |
41 47 48
|
syl2anc |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( _|_ ` A ) i^i ( B vH C ) ) = ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) |
| 50 |
|
incom |
|- ( ( _|_ ` A ) i^i ( B vH C ) ) = ( ( B vH C ) i^i ( _|_ ` A ) ) |
| 51 |
49 50
|
eqtr3di |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) = ( ( B vH C ) i^i ( _|_ ` A ) ) ) |
| 52 |
39 51
|
oveq12d |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) vH ( ( ( _|_ ` A ) i^i B ) vH ( ( _|_ ` A ) i^i C ) ) ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) |
| 53 |
23 36 52
|
3eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) |
| 54 |
53
|
ex |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_H B /\ A C_H C ) -> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) ) |
| 55 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
| 56 |
|
cmcm |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A C_H ( B vH C ) <-> ( B vH C ) C_H A ) ) |
| 57 |
|
cmbr |
|- ( ( ( B vH C ) e. CH /\ A e. CH ) -> ( ( B vH C ) C_H A <-> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) ) |
| 58 |
57
|
ancoms |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( ( B vH C ) C_H A <-> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) ) |
| 59 |
56 58
|
bitrd |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A C_H ( B vH C ) <-> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) ) |
| 60 |
55 59
|
sylan2 |
|- ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A C_H ( B vH C ) <-> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) ) |
| 61 |
60
|
3impb |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A C_H ( B vH C ) <-> ( B vH C ) = ( ( ( B vH C ) i^i A ) vH ( ( B vH C ) i^i ( _|_ ` A ) ) ) ) ) |
| 62 |
54 61
|
sylibrd |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_H B /\ A C_H C ) -> A C_H ( B vH C ) ) ) |
| 63 |
62
|
imp |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> A C_H ( B vH C ) ) |