Metamath Proof Explorer


Theorem cm2ji

Description: A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of Beran p. 49. (Contributed by NM, 11-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1
|- A e. CH
fh1.2
|- B e. CH
fh1.3
|- C e. CH
fh1.4
|- A C_H B
fh1.5
|- A C_H C
Assertion cm2ji
|- A C_H ( B vH C )

Proof

Step Hyp Ref Expression
1 fh1.1
 |-  A e. CH
2 fh1.2
 |-  B e. CH
3 fh1.3
 |-  C e. CH
4 fh1.4
 |-  A C_H B
5 fh1.5
 |-  A C_H C
6 1 2 3 3pm3.2i
 |-  ( A e. CH /\ B e. CH /\ C e. CH )
7 4 5 pm3.2i
 |-  ( A C_H B /\ A C_H C )
8 cm2j
 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A C_H B /\ A C_H C ) ) -> A C_H ( B vH C ) )
9 6 7 8 mp2an
 |-  A C_H ( B vH C )