Metamath Proof Explorer


Theorem cm2mi

Description: A lattice element that commutes with two others also commutes with their meet. Theorem 4.2 of Beran p. 49. (Contributed by NM, 11-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1
|- A e. CH
fh1.2
|- B e. CH
fh1.3
|- C e. CH
fh1.4
|- A C_H B
fh1.5
|- A C_H C
Assertion cm2mi
|- A C_H ( B i^i C )

Proof

Step Hyp Ref Expression
1 fh1.1
 |-  A e. CH
2 fh1.2
 |-  B e. CH
3 fh1.3
 |-  C e. CH
4 fh1.4
 |-  A C_H B
5 fh1.5
 |-  A C_H C
6 2 choccli
 |-  ( _|_ ` B ) e. CH
7 3 choccli
 |-  ( _|_ ` C ) e. CH
8 1 2 4 cmcm2ii
 |-  A C_H ( _|_ ` B )
9 1 3 5 cmcm2ii
 |-  A C_H ( _|_ ` C )
10 1 6 7 8 9 cm2ji
 |-  A C_H ( ( _|_ ` B ) vH ( _|_ ` C ) )
11 2 3 chdmm1i
 |-  ( _|_ ` ( B i^i C ) ) = ( ( _|_ ` B ) vH ( _|_ ` C ) )
12 10 11 breqtrri
 |-  A C_H ( _|_ ` ( B i^i C ) )
13 2 3 chincli
 |-  ( B i^i C ) e. CH
14 1 13 cmcm2i
 |-  ( A C_H ( B i^i C ) <-> A C_H ( _|_ ` ( B i^i C ) ) )
15 12 14 mpbir
 |-  A C_H ( B i^i C )