Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( x = A -> ( x e. CH <-> A e. CH ) ) |
2 |
1
|
anbi1d |
|- ( x = A -> ( ( x e. CH /\ y e. CH ) <-> ( A e. CH /\ y e. CH ) ) ) |
3 |
|
id |
|- ( x = A -> x = A ) |
4 |
|
ineq1 |
|- ( x = A -> ( x i^i y ) = ( A i^i y ) ) |
5 |
|
ineq1 |
|- ( x = A -> ( x i^i ( _|_ ` y ) ) = ( A i^i ( _|_ ` y ) ) ) |
6 |
4 5
|
oveq12d |
|- ( x = A -> ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) |
7 |
3 6
|
eqeq12d |
|- ( x = A -> ( x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) <-> A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) ) |
8 |
2 7
|
anbi12d |
|- ( x = A -> ( ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) <-> ( ( A e. CH /\ y e. CH ) /\ A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) ) ) |
9 |
|
eleq1 |
|- ( y = B -> ( y e. CH <-> B e. CH ) ) |
10 |
9
|
anbi2d |
|- ( y = B -> ( ( A e. CH /\ y e. CH ) <-> ( A e. CH /\ B e. CH ) ) ) |
11 |
|
ineq2 |
|- ( y = B -> ( A i^i y ) = ( A i^i B ) ) |
12 |
|
fveq2 |
|- ( y = B -> ( _|_ ` y ) = ( _|_ ` B ) ) |
13 |
12
|
ineq2d |
|- ( y = B -> ( A i^i ( _|_ ` y ) ) = ( A i^i ( _|_ ` B ) ) ) |
14 |
11 13
|
oveq12d |
|- ( y = B -> ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
15 |
14
|
eqeq2d |
|- ( y = B -> ( A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) |
16 |
10 15
|
anbi12d |
|- ( y = B -> ( ( ( A e. CH /\ y e. CH ) /\ A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) <-> ( ( A e. CH /\ B e. CH ) /\ A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) ) |
17 |
|
df-cm |
|- C_H = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } |
18 |
8 16 17
|
brabg |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( ( A e. CH /\ B e. CH ) /\ A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) ) |
19 |
18
|
bianabs |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) |