| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = A -> ( x e. CH <-> A e. CH ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							anbi1d | 
							 |-  ( x = A -> ( ( x e. CH /\ y e. CH ) <-> ( A e. CH /\ y e. CH ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							 |-  ( x = A -> x = A )  | 
						
						
							| 4 | 
							
								
							 | 
							ineq1 | 
							 |-  ( x = A -> ( x i^i y ) = ( A i^i y ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ineq1 | 
							 |-  ( x = A -> ( x i^i ( _|_ ` y ) ) = ( A i^i ( _|_ ` y ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							oveq12d | 
							 |-  ( x = A -> ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqeq12d | 
							 |-  ( x = A -> ( x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) <-> A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							anbi12d | 
							 |-  ( x = A -> ( ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) <-> ( ( A e. CH /\ y e. CH ) /\ A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							 |-  ( y = B -> ( y e. CH <-> B e. CH ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2d | 
							 |-  ( y = B -> ( ( A e. CH /\ y e. CH ) <-> ( A e. CH /\ B e. CH ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ineq2 | 
							 |-  ( y = B -> ( A i^i y ) = ( A i^i B ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = B -> ( _|_ ` y ) = ( _|_ ` B ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ineq2d | 
							 |-  ( y = B -> ( A i^i ( _|_ ` y ) ) = ( A i^i ( _|_ ` B ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							oveq12d | 
							 |-  ( y = B -> ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq2d | 
							 |-  ( y = B -> ( A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							anbi12d | 
							 |-  ( y = B -> ( ( ( A e. CH /\ y e. CH ) /\ A = ( ( A i^i y ) vH ( A i^i ( _|_ ` y ) ) ) ) <-> ( ( A e. CH /\ B e. CH ) /\ A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-cm | 
							 |-  C_H = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } | 
						
						
							| 18 | 
							
								8 16 17
							 | 
							brabg | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> ( ( A e. CH /\ B e. CH ) /\ A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							bianabs | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) )  |