| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
|- A e. CH |
| 2 |
|
pjoml2.2 |
|- B e. CH |
| 3 |
1 2
|
cmcm4i |
|- ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) ) |
| 4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 5 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 6 |
4 5
|
cmbri |
|- ( ( _|_ ` A ) C_H ( _|_ ` B ) <-> ( _|_ ` A ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 7 |
|
eqcom |
|- ( A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) <-> ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) = A ) |
| 8 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 9 |
1 5
|
chjcli |
|- ( A vH ( _|_ ` B ) ) e. CH |
| 10 |
8 9
|
chincli |
|- ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) e. CH |
| 11 |
10 1
|
chcon3i |
|- ( ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) = A <-> ( _|_ ` A ) = ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) ) |
| 12 |
8 9
|
chdmm1i |
|- ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) = ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH ( _|_ ` B ) ) ) ) |
| 13 |
1 2
|
chdmj1i |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 14 |
1 5
|
chdmj1i |
|- ( _|_ ` ( A vH ( _|_ ` B ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) |
| 15 |
13 14
|
oveq12i |
|- ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH ( _|_ ` B ) ) ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
| 16 |
12 15
|
eqtri |
|- ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
| 17 |
16
|
eqeq2i |
|- ( ( _|_ ` A ) = ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) <-> ( _|_ ` A ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 18 |
7 11 17
|
3bitrri |
|- ( ( _|_ ` A ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) <-> A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) |
| 19 |
3 6 18
|
3bitri |
|- ( A C_H B <-> A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) |