Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
|- A e. CH |
2 |
|
pjoml2.2 |
|- B e. CH |
3 |
1 2
|
cmbr3i |
|- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
4 |
|
inss2 |
|- ( A i^i B ) C_ B |
5 |
|
sseq1 |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B <-> ( A i^i B ) C_ B ) ) |
6 |
4 5
|
mpbiri |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
7 |
|
inss1 |
|- ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A |
8 |
7
|
jctl |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A /\ ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) ) |
9 |
|
ssin |
|- ( ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A /\ ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) ) |
10 |
8 9
|
sylib |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) ) |
11 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
12 |
2 11
|
chub2i |
|- B C_ ( ( _|_ ` A ) vH B ) |
13 |
|
sslin |
|- ( B C_ ( ( _|_ ` A ) vH B ) -> ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) |
14 |
12 13
|
ax-mp |
|- ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) |
15 |
10 14
|
jctir |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) /\ ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) ) |
16 |
|
eqss |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) /\ ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) ) |
17 |
15 16
|
sylibr |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
18 |
6 17
|
impbii |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
19 |
3 18
|
bitri |
|- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |