| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
|- A e. CH |
| 2 |
|
pjoml2.2 |
|- B e. CH |
| 3 |
1 2
|
cmbr3i |
|- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| 4 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 5 |
|
sseq1 |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B <-> ( A i^i B ) C_ B ) ) |
| 6 |
4 5
|
mpbiri |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
| 7 |
|
inss1 |
|- ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A |
| 8 |
7
|
jctl |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A /\ ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) ) |
| 9 |
|
ssin |
|- ( ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A /\ ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) ) |
| 10 |
8 9
|
sylib |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) ) |
| 11 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 12 |
2 11
|
chub2i |
|- B C_ ( ( _|_ ` A ) vH B ) |
| 13 |
|
sslin |
|- ( B C_ ( ( _|_ ` A ) vH B ) -> ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) |
| 14 |
12 13
|
ax-mp |
|- ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 15 |
10 14
|
jctir |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) /\ ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) ) |
| 16 |
|
eqss |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) /\ ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) ) |
| 17 |
15 16
|
sylibr |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| 18 |
6 17
|
impbii |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
| 19 |
3 18
|
bitri |
|- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |