Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
1
|
clsval2 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) |
3 |
2
|
difeq2d |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) = ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) ) |
4 |
|
difss |
|- ( X \ S ) C_ X |
5 |
1
|
ntropn |
|- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( int ` J ) ` ( X \ S ) ) e. J ) |
6 |
4 5
|
mpan2 |
|- ( J e. Top -> ( ( int ` J ) ` ( X \ S ) ) e. J ) |
7 |
1
|
eltopss |
|- ( ( J e. Top /\ ( ( int ` J ) ` ( X \ S ) ) e. J ) -> ( ( int ` J ) ` ( X \ S ) ) C_ X ) |
8 |
6 7
|
mpdan |
|- ( J e. Top -> ( ( int ` J ) ` ( X \ S ) ) C_ X ) |
9 |
|
dfss4 |
|- ( ( ( int ` J ) ` ( X \ S ) ) C_ X <-> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) = ( ( int ` J ) ` ( X \ S ) ) ) |
10 |
8 9
|
sylib |
|- ( J e. Top -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) = ( ( int ` J ) ` ( X \ S ) ) ) |
11 |
10 6
|
eqeltrd |
|- ( J e. Top -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) e. J ) |
12 |
11
|
adantr |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) e. J ) |
13 |
3 12
|
eqeltrd |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |