| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|- X = U. J |
| 2 |
1
|
clsval2 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) |
| 3 |
2
|
difeq2d |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) = ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) ) |
| 4 |
|
difss |
|- ( X \ S ) C_ X |
| 5 |
1
|
ntropn |
|- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( int ` J ) ` ( X \ S ) ) e. J ) |
| 6 |
4 5
|
mpan2 |
|- ( J e. Top -> ( ( int ` J ) ` ( X \ S ) ) e. J ) |
| 7 |
1
|
eltopss |
|- ( ( J e. Top /\ ( ( int ` J ) ` ( X \ S ) ) e. J ) -> ( ( int ` J ) ` ( X \ S ) ) C_ X ) |
| 8 |
6 7
|
mpdan |
|- ( J e. Top -> ( ( int ` J ) ` ( X \ S ) ) C_ X ) |
| 9 |
|
dfss4 |
|- ( ( ( int ` J ) ` ( X \ S ) ) C_ X <-> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) = ( ( int ` J ) ` ( X \ S ) ) ) |
| 10 |
8 9
|
sylib |
|- ( J e. Top -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) = ( ( int ` J ) ` ( X \ S ) ) ) |
| 11 |
10 6
|
eqeltrd |
|- ( J e. Top -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) e. J ) |
| 12 |
11
|
adantr |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) e. J ) |
| 13 |
3 12
|
eqeltrd |
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |