| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cmcm3 | 
							 |-  ( ( B e. CH /\ A e. CH ) -> ( B C_H A <-> ( _|_ ` B ) C_H A ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							ancoms | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( B C_H A <-> ( _|_ ` B ) C_H A ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cmcm | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> B C_H A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							choccl | 
							 |-  ( B e. CH -> ( _|_ ` B ) e. CH )  | 
						
						
							| 5 | 
							
								
							 | 
							cmcm | 
							 |-  ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( _|_ ` B ) C_H A ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylan2 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( _|_ ` B ) C_H A ) )  | 
						
						
							| 7 | 
							
								2 3 6
							 | 
							3bitr4d | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A C_H ( _|_ ` B ) ) )  |