Metamath Proof Explorer


Theorem cmcm3i

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. (Contributed by NM, 4-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1
|- A e. CH
pjoml2.2
|- B e. CH
Assertion cmcm3i
|- ( A C_H B <-> ( _|_ ` A ) C_H B )

Proof

Step Hyp Ref Expression
1 pjoml2.1
 |-  A e. CH
2 pjoml2.2
 |-  B e. CH
3 2 1 cmcm2i
 |-  ( B C_H A <-> B C_H ( _|_ ` A ) )
4 1 2 cmcmi
 |-  ( A C_H B <-> B C_H A )
5 1 choccli
 |-  ( _|_ ` A ) e. CH
6 5 2 cmcmi
 |-  ( ( _|_ ` A ) C_H B <-> B C_H ( _|_ ` A ) )
7 3 4 6 3bitr4i
 |-  ( A C_H B <-> ( _|_ ` A ) C_H B )