Metamath Proof Explorer


Theorem cmcm4i

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1
|- A e. CH
pjoml2.2
|- B e. CH
Assertion cmcm4i
|- ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) )

Proof

Step Hyp Ref Expression
1 pjoml2.1
 |-  A e. CH
2 pjoml2.2
 |-  B e. CH
3 1 2 cmcm2i
 |-  ( A C_H B <-> A C_H ( _|_ ` B ) )
4 2 choccli
 |-  ( _|_ ` B ) e. CH
5 1 4 cmcm3i
 |-  ( A C_H ( _|_ ` B ) <-> ( _|_ ` A ) C_H ( _|_ ` B ) )
6 3 5 bitri
 |-  ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) )