Metamath Proof Explorer


Theorem cmcmii

Description: Commutation is symmetric. Theorem 2(v) of Kalmbach p. 22. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1
|- A e. CH
pjoml2.2
|- B e. CH
cmcmi.1
|- A C_H B
Assertion cmcmii
|- B C_H A

Proof

Step Hyp Ref Expression
1 pjoml2.1
 |-  A e. CH
2 pjoml2.2
 |-  B e. CH
3 cmcmi.1
 |-  A C_H B
4 1 2 cmcmi
 |-  ( A C_H B <-> B C_H A )
5 3 4 mpbi
 |-  B C_H A