| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjoml2.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							pjoml2.2 | 
							 |-  B e. CH  | 
						
						
							| 3 | 
							
								1
							 | 
							choccli | 
							 |-  ( _|_ ` A ) e. CH  | 
						
						
							| 4 | 
							
								2 3
							 | 
							chub2i | 
							 |-  B C_ ( ( _|_ ` A ) vH B )  | 
						
						
							| 5 | 
							
								
							 | 
							sseqin2 | 
							 |-  ( B C_ ( ( _|_ ` A ) vH B ) <-> ( ( ( _|_ ` A ) vH B ) i^i B ) = B )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpbi | 
							 |-  ( ( ( _|_ ` A ) vH B ) i^i B ) = B  | 
						
						
							| 7 | 
							
								6
							 | 
							ineq2i | 
							 |-  ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( ( _|_ ` A ) vH B ) i^i B ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B )  | 
						
						
							| 8 | 
							
								
							 | 
							inass | 
							 |-  ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( ( _|_ ` A ) vH B ) i^i B ) )  | 
						
						
							| 9 | 
							
								1 2
							 | 
							chdmm1i | 
							 |-  ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ineq1i | 
							 |-  ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B )  | 
						
						
							| 11 | 
							
								7 8 10
							 | 
							3eqtr4ri | 
							 |-  ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B )  | 
						
						
							| 12 | 
							
								1 2
							 | 
							chdmj4i | 
							 |-  ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i B )  | 
						
						
							| 13 | 
							
								1 2
							 | 
							chdmj2i | 
							 |-  ( _|_ ` ( ( _|_ ` A ) vH B ) ) = ( A i^i ( _|_ ` B ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							oveq12i | 
							 |-  ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq2i | 
							 |-  ( A = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							biimpri | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> A = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq2d | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( _|_ ` A ) = ( _|_ ` ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) )  | 
						
						
							| 18 | 
							
								2
							 | 
							choccli | 
							 |-  ( _|_ ` B ) e. CH  | 
						
						
							| 19 | 
							
								3 18
							 | 
							chjcli | 
							 |-  ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH  | 
						
						
							| 20 | 
							
								3 2
							 | 
							chjcli | 
							 |-  ( ( _|_ ` A ) vH B ) e. CH  | 
						
						
							| 21 | 
							
								19 20
							 | 
							chdmj4i | 
							 |-  ( _|_ ` ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) )  | 
						
						
							| 22 | 
							
								17 21
							 | 
							eqtr2di | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) = ( _|_ ` A ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ineq1d | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) = ( ( _|_ ` A ) i^i B ) )  | 
						
						
							| 24 | 
							
								11 23
							 | 
							eqtrid | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( _|_ ` A ) i^i B ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq2d | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							inss2 | 
							 |-  ( A i^i B ) C_ B  | 
						
						
							| 27 | 
							
								1 2
							 | 
							chincli | 
							 |-  ( A i^i B ) e. CH  | 
						
						
							| 28 | 
							
								27 2
							 | 
							pjoml2i | 
							 |-  ( ( A i^i B ) C_ B -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							ax-mp | 
							 |-  ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B  | 
						
						
							| 30 | 
							
								
							 | 
							incom | 
							 |-  ( A i^i B ) = ( B i^i A )  | 
						
						
							| 31 | 
							
								
							 | 
							incom | 
							 |-  ( ( _|_ ` A ) i^i B ) = ( B i^i ( _|_ ` A ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							oveq12i | 
							 |-  ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) )  | 
						
						
							| 33 | 
							
								25 29 32
							 | 
							3eqtr3g | 
							 |-  ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) )  | 
						
						
							| 34 | 
							
								1 2
							 | 
							cmbri | 
							 |-  ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) )  | 
						
						
							| 35 | 
							
								2 1
							 | 
							cmbri | 
							 |-  ( B C_H A <-> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) )  | 
						
						
							| 36 | 
							
								33 34 35
							 | 
							3imtr4i | 
							 |-  ( A C_H B -> B C_H A )  |