Step |
Hyp |
Ref |
Expression |
1 |
|
cmetcusp1.x |
|- X = ( Base ` F ) |
2 |
|
cmetcusp1.d |
|- D = ( ( dist ` F ) |` ( X X. X ) ) |
3 |
|
cmetcusp1.u |
|- U = ( UnifSt ` F ) |
4 |
|
cmsms |
|- ( F e. CMetSp -> F e. MetSp ) |
5 |
|
msxms |
|- ( F e. MetSp -> F e. *MetSp ) |
6 |
4 5
|
syl |
|- ( F e. CMetSp -> F e. *MetSp ) |
7 |
1 2 3
|
xmsusp |
|- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) |
8 |
6 7
|
syl3an2 |
|- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) |
9 |
|
simpl3 |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> U = ( metUnif ` D ) ) |
10 |
9
|
fveq2d |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( CauFilU ` U ) = ( CauFilU ` ( metUnif ` D ) ) ) |
11 |
10
|
eleq2d |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) <-> c e. ( CauFilU ` ( metUnif ` D ) ) ) ) |
12 |
|
simpl1 |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> X =/= (/) ) |
13 |
1 2
|
cmscmet |
|- ( F e. CMetSp -> D e. ( CMet ` X ) ) |
14 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
15 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
16 |
13 14 15
|
3syl |
|- ( F e. CMetSp -> D e. ( *Met ` X ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> D e. ( *Met ` X ) ) |
18 |
17
|
adantr |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> D e. ( *Met ` X ) ) |
19 |
|
simpr |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> c e. ( Fil ` X ) ) |
20 |
|
cfilucfil4 |
|- ( ( X =/= (/) /\ D e. ( *Met ` X ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` ( metUnif ` D ) ) <-> c e. ( CauFil ` D ) ) ) |
21 |
12 18 19 20
|
syl3anc |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` ( metUnif ` D ) ) <-> c e. ( CauFil ` D ) ) ) |
22 |
11 21
|
bitrd |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) <-> c e. ( CauFil ` D ) ) ) |
23 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
24 |
23
|
iscmet |
|- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) |
25 |
24
|
simprbi |
|- ( D e. ( CMet ` X ) -> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) |
26 |
13 25
|
syl |
|- ( F e. CMetSp -> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) |
27 |
|
eqid |
|- ( TopOpen ` F ) = ( TopOpen ` F ) |
28 |
27 1 2
|
xmstopn |
|- ( F e. *MetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) |
29 |
6 28
|
syl |
|- ( F e. CMetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) |
30 |
29
|
oveq1d |
|- ( F e. CMetSp -> ( ( TopOpen ` F ) fLim c ) = ( ( MetOpen ` D ) fLim c ) ) |
31 |
30
|
neeq1d |
|- ( F e. CMetSp -> ( ( ( TopOpen ` F ) fLim c ) =/= (/) <-> ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) |
32 |
31
|
ralbidv |
|- ( F e. CMetSp -> ( A. c e. ( CauFil ` D ) ( ( TopOpen ` F ) fLim c ) =/= (/) <-> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) |
33 |
26 32
|
mpbird |
|- ( F e. CMetSp -> A. c e. ( CauFil ` D ) ( ( TopOpen ` F ) fLim c ) =/= (/) ) |
34 |
33
|
r19.21bi |
|- ( ( F e. CMetSp /\ c e. ( CauFil ` D ) ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) |
35 |
34
|
ex |
|- ( F e. CMetSp -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
36 |
35
|
3ad2ant2 |
|- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
37 |
36
|
adantr |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
38 |
22 37
|
sylbid |
|- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
39 |
38
|
ralrimiva |
|- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> A. c e. ( Fil ` X ) ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
40 |
1 3 27
|
iscusp2 |
|- ( F e. CUnifSp <-> ( F e. UnifSp /\ A. c e. ( Fil ` X ) ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) ) |
41 |
8 39 40
|
sylanbrc |
|- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. CUnifSp ) |