Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet.1 |
|- J = ( MetOpen ` D ) |
2 |
1
|
iscmet |
|- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
3 |
2
|
simprbi |
|- ( D e. ( CMet ` X ) -> A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) |
4 |
|
oveq2 |
|- ( f = F -> ( J fLim f ) = ( J fLim F ) ) |
5 |
4
|
neeq1d |
|- ( f = F -> ( ( J fLim f ) =/= (/) <-> ( J fLim F ) =/= (/) ) ) |
6 |
5
|
rspccva |
|- ( ( A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) |
7 |
3 6
|
sylan |
|- ( ( D e. ( CMet ` X ) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) |