Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 29-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
2 | 1 | iscmet | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
3 | 2 | simplbi | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |