Metamath Proof Explorer


Theorem cmetmeti

Description: A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007)

Ref Expression
Hypothesis cmetmeti.1
|- D e. ( CMet ` X )
Assertion cmetmeti
|- D e. ( Met ` X )

Proof

Step Hyp Ref Expression
1 cmetmeti.1
 |-  D e. ( CMet ` X )
2 cmetmet
 |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) )
3 1 2 ax-mp
 |-  D e. ( Met ` X )