Metamath Proof Explorer


Theorem cmm2i

Description: A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1
|- A e. CH
pjoml2.2
|- B e. CH
Assertion cmm2i
|- B C_H ( A i^i B )

Proof

Step Hyp Ref Expression
1 pjoml2.1
 |-  A e. CH
2 pjoml2.2
 |-  B e. CH
3 2 1 cmm1i
 |-  B C_H ( B i^i A )
4 incom
 |-  ( B i^i A ) = ( A i^i B )
5 3 4 breqtri
 |-  B C_H ( A i^i B )