| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difssd |
|- ( A e. dom vol -> ( RR \ A ) C_ RR ) |
| 2 |
|
elpwi |
|- ( x e. ~P RR -> x C_ RR ) |
| 3 |
|
inss1 |
|- ( x i^i A ) C_ x |
| 4 |
|
ovolsscl |
|- ( ( ( x i^i A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 5 |
3 4
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 6 |
5
|
3adant1 |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 7 |
6
|
recnd |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. CC ) |
| 8 |
|
difss |
|- ( x \ A ) C_ x |
| 9 |
|
ovolsscl |
|- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 10 |
8 9
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 11 |
10
|
3adant1 |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 12 |
11
|
recnd |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. CC ) |
| 13 |
7 12
|
addcomd |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x \ A ) ) + ( vol* ` ( x i^i A ) ) ) ) |
| 14 |
|
mblsplit |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 15 |
|
indifcom |
|- ( RR i^i ( x \ A ) ) = ( x i^i ( RR \ A ) ) |
| 16 |
|
simp2 |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
| 17 |
16
|
ssdifssd |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ A ) C_ RR ) |
| 18 |
|
sseqin2 |
|- ( ( x \ A ) C_ RR <-> ( RR i^i ( x \ A ) ) = ( x \ A ) ) |
| 19 |
17 18
|
sylib |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( RR i^i ( x \ A ) ) = ( x \ A ) ) |
| 20 |
15 19
|
eqtr3id |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i ( RR \ A ) ) = ( x \ A ) ) |
| 21 |
20
|
fveq2d |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( RR \ A ) ) ) = ( vol* ` ( x \ A ) ) ) |
| 22 |
|
difin |
|- ( x \ ( x i^i ( RR \ A ) ) ) = ( x \ ( RR \ A ) ) |
| 23 |
20
|
difeq2d |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ ( x i^i ( RR \ A ) ) ) = ( x \ ( x \ A ) ) ) |
| 24 |
22 23
|
eqtr3id |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ ( RR \ A ) ) = ( x \ ( x \ A ) ) ) |
| 25 |
|
dfin4 |
|- ( x i^i A ) = ( x \ ( x \ A ) ) |
| 26 |
24 25
|
eqtr4di |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ ( RR \ A ) ) = ( x i^i A ) ) |
| 27 |
26
|
fveq2d |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( RR \ A ) ) ) = ( vol* ` ( x i^i A ) ) ) |
| 28 |
21 27
|
oveq12d |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) = ( ( vol* ` ( x \ A ) ) + ( vol* ` ( x i^i A ) ) ) ) |
| 29 |
13 14 28
|
3eqtr4d |
|- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) |
| 30 |
29
|
3expia |
|- ( ( A e. dom vol /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) |
| 31 |
2 30
|
sylan2 |
|- ( ( A e. dom vol /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) |
| 32 |
31
|
ralrimiva |
|- ( A e. dom vol -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) |
| 33 |
|
ismbl |
|- ( ( RR \ A ) e. dom vol <-> ( ( RR \ A ) C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) ) |
| 34 |
1 32 33
|
sylanbrc |
|- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |