Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmn4d.1 | |- B = ( Base ` G ) |
|
cmn4d.2 | |- .+ = ( +g ` G ) |
||
cmn4d.3 | |- ( ph -> G e. CMnd ) |
||
cmn4d.4 | |- ( ph -> X e. B ) |
||
cmn4d.5 | |- ( ph -> Y e. B ) |
||
cmn4d.6 | |- ( ph -> Z e. B ) |
||
cmn4d.7 | |- ( ph -> W e. B ) |
||
Assertion | cmn4d | |- ( ph -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmn4d.1 | |- B = ( Base ` G ) |
|
2 | cmn4d.2 | |- .+ = ( +g ` G ) |
|
3 | cmn4d.3 | |- ( ph -> G e. CMnd ) |
|
4 | cmn4d.4 | |- ( ph -> X e. B ) |
|
5 | cmn4d.5 | |- ( ph -> Y e. B ) |
|
6 | cmn4d.6 | |- ( ph -> Z e. B ) |
|
7 | cmn4d.7 | |- ( ph -> W e. B ) |
|
8 | 1 2 | cmn4 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |
9 | 3 4 5 6 7 8 | syl122anc | |- ( ph -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |