| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmnbascntr.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | cmnbascntr.z |  |-  Z = ( Cntr ` G ) | 
						
							| 3 |  | eqid |  |-  ( Cntz ` G ) = ( Cntz ` G ) | 
						
							| 4 | 1 3 | cntrval |  |-  ( ( Cntz ` G ) ` B ) = ( Cntr ` G ) | 
						
							| 5 |  | ssid |  |-  B C_ B | 
						
							| 6 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 7 | 1 6 3 | cntzval |  |-  ( B C_ B -> ( ( Cntz ` G ) ` B ) = { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } ) | 
						
							| 8 | 5 7 | ax-mp |  |-  ( ( Cntz ` G ) ` B ) = { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } | 
						
							| 9 | 2 4 8 | 3eqtr2i |  |-  Z = { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } | 
						
							| 10 | 1 6 | cmncom |  |-  ( ( G e. CMnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) | 
						
							| 11 | 10 | 3expa |  |-  ( ( ( G e. CMnd /\ x e. B ) /\ y e. B ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( G e. CMnd /\ x e. B ) -> A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) | 
						
							| 13 | 12 | rabeqcda |  |-  ( G e. CMnd -> { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } = B ) | 
						
							| 14 | 9 13 | eqtr2id |  |-  ( G e. CMnd -> B = Z ) |