Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
3 | 1 2 | iscmn | |- ( G e. CMnd <-> ( G e. Mnd /\ A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
4 | 3 | simplbi | |- ( G e. CMnd -> G e. Mnd ) |