Metamath Proof Explorer


Theorem cmnmndd

Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis cmnmndd.1
|- ( ph -> G e. CMnd )
Assertion cmnmndd
|- ( ph -> G e. Mnd )

Proof

Step Hyp Ref Expression
1 cmnmndd.1
 |-  ( ph -> G e. CMnd )
2 cmnmnd
 |-  ( G e. CMnd -> G e. Mnd )
3 1 2 syl
 |-  ( ph -> G e. Mnd )