Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007) (Proof shortened by OpenAI, 3-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | cmntrcld | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | ntropn | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
| 3 | 1 | opncld | |- ( ( J e. Top /\ ( ( int ` J ) ` S ) e. J ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) ) |
| 4 | 2 3 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) ) |