Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007) (Proof shortened by OpenAI, 3-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |- X = U. J |
|
Assertion | cmntrcld | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |- X = U. J |
|
2 | 1 | ntropn | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
3 | 1 | opncld | |- ( ( J e. Top /\ ( ( int ` J ) ` S ) e. J ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) ) |
4 | 2 3 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) ) |