Metamath Proof Explorer


Theorem cmntrcld

Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion cmntrcld
|- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 ntropn
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J )
3 1 opncld
 |-  ( ( J e. Top /\ ( ( int ` J ) ` S ) e. J ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) )
4 2 3 syldan
 |-  ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` S ) ) e. ( Clsd ` J ) )