Metamath Proof Explorer


Theorem cmodscexp

Description: The powers of _i belong to the scalar subring of a subcomplex module if _i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021)

Ref Expression
Hypotheses cmodscexp.f
|- F = ( Scalar ` W )
cmodscexp.k
|- K = ( Base ` F )
Assertion cmodscexp
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K )

Proof

Step Hyp Ref Expression
1 cmodscexp.f
 |-  F = ( Scalar ` W )
2 cmodscexp.k
 |-  K = ( Base ` F )
3 ax-icn
 |-  _i e. CC
4 3 a1i
 |-  ( ( W e. CMod /\ _i e. K ) -> _i e. CC )
5 nnnn0
 |-  ( N e. NN -> N e. NN0 )
6 cnfldexp
 |-  ( ( _i e. CC /\ N e. NN0 ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) )
7 4 5 6 syl2an
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) )
8 1 2 clmsubrg
 |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) )
9 eqid
 |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld )
10 9 subrgsubm
 |-  ( K e. ( SubRing ` CCfld ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) )
11 8 10 syl
 |-  ( W e. CMod -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) )
12 11 ad2antrr
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) )
13 5 adantl
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> N e. NN0 )
14 simplr
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> _i e. K )
15 eqid
 |-  ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) )
16 15 submmulgcl
 |-  ( ( K e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ N e. NN0 /\ _i e. K ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K )
17 12 13 14 16 syl3anc
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K )
18 7 17 eqeltrrd
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K )