| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmodscexp.f |
|- F = ( Scalar ` W ) |
| 2 |
|
cmodscexp.k |
|- K = ( Base ` F ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
3
|
a1i |
|- ( ( W e. CMod /\ _i e. K ) -> _i e. CC ) |
| 5 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 6 |
|
cnfldexp |
|- ( ( _i e. CC /\ N e. NN0 ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) ) |
| 8 |
1 2
|
clmsubrg |
|- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 9 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 10 |
9
|
subrgsubm |
|- ( K e. ( SubRing ` CCfld ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 11 |
8 10
|
syl |
|- ( W e. CMod -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 13 |
5
|
adantl |
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> N e. NN0 ) |
| 14 |
|
simplr |
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> _i e. K ) |
| 15 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
| 16 |
15
|
submmulgcl |
|- ( ( K e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ N e. NN0 /\ _i e. K ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K ) |
| 17 |
12 13 14 16
|
syl3anc |
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K ) |
| 18 |
7 17
|
eqeltrrd |
|- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K ) |