Metamath Proof Explorer


Theorem cmodscmulexp

Description: The scalar product of a vector with powers of _i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains _i . (Contributed by AV, 18-Oct-2021)

Ref Expression
Hypotheses cmodscexp.f
|- F = ( Scalar ` W )
cmodscexp.k
|- K = ( Base ` F )
cmodscmulexp.x
|- X = ( Base ` W )
cmodscmulexp.s
|- .x. = ( .s ` W )
Assertion cmodscmulexp
|- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( ( _i ^ N ) .x. B ) e. X )

Proof

Step Hyp Ref Expression
1 cmodscexp.f
 |-  F = ( Scalar ` W )
2 cmodscexp.k
 |-  K = ( Base ` F )
3 cmodscmulexp.x
 |-  X = ( Base ` W )
4 cmodscmulexp.s
 |-  .x. = ( .s ` W )
5 clmlmod
 |-  ( W e. CMod -> W e. LMod )
6 5 adantr
 |-  ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> W e. LMod )
7 simp1
 |-  ( ( _i e. K /\ B e. X /\ N e. NN ) -> _i e. K )
8 7 anim2i
 |-  ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( W e. CMod /\ _i e. K ) )
9 simpr3
 |-  ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> N e. NN )
10 1 2 cmodscexp
 |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K )
11 8 9 10 syl2anc
 |-  ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( _i ^ N ) e. K )
12 simpr2
 |-  ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> B e. X )
13 3 1 4 2 lmodvscl
 |-  ( ( W e. LMod /\ ( _i ^ N ) e. K /\ B e. X ) -> ( ( _i ^ N ) .x. B ) e. X )
14 6 11 12 13 syl3anc
 |-  ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( ( _i ^ N ) .x. B ) e. X )