Metamath Proof Explorer


Theorem cmpcmet

Description: A compact metric space is complete. One half of heibor . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses relcmpcmet.1
|- J = ( MetOpen ` D )
relcmpcmet.2
|- ( ph -> D e. ( Met ` X ) )
cmpcmet.3
|- ( ph -> J e. Comp )
Assertion cmpcmet
|- ( ph -> D e. ( CMet ` X ) )

Proof

Step Hyp Ref Expression
1 relcmpcmet.1
 |-  J = ( MetOpen ` D )
2 relcmpcmet.2
 |-  ( ph -> D e. ( Met ` X ) )
3 cmpcmet.3
 |-  ( ph -> J e. Comp )
4 1rp
 |-  1 e. RR+
5 4 a1i
 |-  ( ph -> 1 e. RR+ )
6 3 adantr
 |-  ( ( ph /\ x e. X ) -> J e. Comp )
7 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
8 2 7 syl
 |-  ( ph -> D e. ( *Met ` X ) )
9 8 adantr
 |-  ( ( ph /\ x e. X ) -> D e. ( *Met ` X ) )
10 1 mopntop
 |-  ( D e. ( *Met ` X ) -> J e. Top )
11 9 10 syl
 |-  ( ( ph /\ x e. X ) -> J e. Top )
12 simpr
 |-  ( ( ph /\ x e. X ) -> x e. X )
13 rpxr
 |-  ( 1 e. RR+ -> 1 e. RR* )
14 4 13 mp1i
 |-  ( ( ph /\ x e. X ) -> 1 e. RR* )
15 blssm
 |-  ( ( D e. ( *Met ` X ) /\ x e. X /\ 1 e. RR* ) -> ( x ( ball ` D ) 1 ) C_ X )
16 9 12 14 15 syl3anc
 |-  ( ( ph /\ x e. X ) -> ( x ( ball ` D ) 1 ) C_ X )
17 1 mopnuni
 |-  ( D e. ( *Met ` X ) -> X = U. J )
18 9 17 syl
 |-  ( ( ph /\ x e. X ) -> X = U. J )
19 16 18 sseqtrd
 |-  ( ( ph /\ x e. X ) -> ( x ( ball ` D ) 1 ) C_ U. J )
20 eqid
 |-  U. J = U. J
21 20 clscld
 |-  ( ( J e. Top /\ ( x ( ball ` D ) 1 ) C_ U. J ) -> ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) )
22 11 19 21 syl2anc
 |-  ( ( ph /\ x e. X ) -> ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) )
23 cmpcld
 |-  ( ( J e. Comp /\ ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) -> ( J |`t ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) ) e. Comp )
24 6 22 23 syl2anc
 |-  ( ( ph /\ x e. X ) -> ( J |`t ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) ) e. Comp )
25 1 2 5 24 relcmpcmet
 |-  ( ph -> D e. ( CMet ` X ) )