Step |
Hyp |
Ref |
Expression |
1 |
|
cmpidelt.1 |
|- X = ran G |
2 |
|
cmpidelt.2 |
|- U = ( GId ` G ) |
3 |
1 2
|
idrval |
|- ( G e. ( Magma i^i ExId ) -> U = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
4 |
3
|
eqcomd |
|- ( G e. ( Magma i^i ExId ) -> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) = U ) |
5 |
1 2
|
iorlid |
|- ( G e. ( Magma i^i ExId ) -> U e. X ) |
6 |
1
|
exidu1 |
|- ( G e. ( Magma i^i ExId ) -> E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
7 |
|
oveq1 |
|- ( u = U -> ( u G x ) = ( U G x ) ) |
8 |
7
|
eqeq1d |
|- ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) |
9 |
8
|
ovanraleqv |
|- ( u = U -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
10 |
9
|
riota2 |
|- ( ( U e. X /\ E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) -> ( A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) = U ) ) |
11 |
5 6 10
|
syl2anc |
|- ( G e. ( Magma i^i ExId ) -> ( A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) = U ) ) |
12 |
4 11
|
mpbird |
|- ( G e. ( Magma i^i ExId ) -> A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) ) |
13 |
|
oveq2 |
|- ( x = A -> ( U G x ) = ( U G A ) ) |
14 |
|
id |
|- ( x = A -> x = A ) |
15 |
13 14
|
eqeq12d |
|- ( x = A -> ( ( U G x ) = x <-> ( U G A ) = A ) ) |
16 |
|
oveq1 |
|- ( x = A -> ( x G U ) = ( A G U ) ) |
17 |
16 14
|
eqeq12d |
|- ( x = A -> ( ( x G U ) = x <-> ( A G U ) = A ) ) |
18 |
15 17
|
anbi12d |
|- ( x = A -> ( ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( ( U G A ) = A /\ ( A G U ) = A ) ) ) |
19 |
18
|
rspccva |
|- ( ( A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) /\ A e. X ) -> ( ( U G A ) = A /\ ( A G U ) = A ) ) |
20 |
12 19
|
sylan |
|- ( ( G e. ( Magma i^i ExId ) /\ A e. X ) -> ( ( U G A ) = A /\ ( A G U ) = A ) ) |