Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | cmptop | |- ( J e. Comp -> J e. Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- U. J = U. J |
|
2 | 1 | iscmp | |- ( J e. Comp <-> ( J e. Top /\ A. r e. ~P J ( U. J = U. r -> E. s e. ( ~P r i^i Fin ) U. J = U. s ) ) ) |
3 | 2 | simplbi | |- ( J e. Comp -> J e. Top ) |