Metamath Proof Explorer


Theorem cmscmet

Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1
|- X = ( Base ` M )
iscms.2
|- D = ( ( dist ` M ) |` ( X X. X ) )
Assertion cmscmet
|- ( M e. CMetSp -> D e. ( CMet ` X ) )

Proof

Step Hyp Ref Expression
1 iscms.1
 |-  X = ( Base ` M )
2 iscms.2
 |-  D = ( ( dist ` M ) |` ( X X. X ) )
3 1 2 iscms
 |-  ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) )
4 3 simprbi
 |-  ( M e. CMetSp -> D e. ( CMet ` X ) )