Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscms.1 | |- X = ( Base ` M ) |
|
iscms.2 | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
||
Assertion | cmscmet | |- ( M e. CMetSp -> D e. ( CMet ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscms.1 | |- X = ( Base ` M ) |
|
2 | iscms.2 | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
|
3 | 1 2 | iscms | |- ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) ) |
4 | 3 | simprbi | |- ( M e. CMetSp -> D e. ( CMet ` X ) ) |