Step |
Hyp |
Ref |
Expression |
1 |
|
cmslssbn.x |
|- X = ( W |`s U ) |
2 |
|
cmscsscms.s |
|- S = ( ClSubSp ` W ) |
3 |
|
cmsms |
|- ( W e. CMetSp -> W e. MetSp ) |
4 |
3
|
adantr |
|- ( ( W e. CMetSp /\ W e. CPreHil ) -> W e. MetSp ) |
5 |
|
ressms |
|- ( ( W e. MetSp /\ U e. S ) -> ( W |`s U ) e. MetSp ) |
6 |
4 5
|
sylan |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( W |`s U ) e. MetSp ) |
7 |
1 6
|
eqeltrid |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> X e. MetSp ) |
8 |
|
cphlmod |
|- ( W e. CPreHil -> W e. LMod ) |
9 |
8
|
adantl |
|- ( ( W e. CMetSp /\ W e. CPreHil ) -> W e. LMod ) |
10 |
9
|
adantr |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> W e. LMod ) |
11 |
|
cphphl |
|- ( W e. CPreHil -> W e. PreHil ) |
12 |
11
|
adantl |
|- ( ( W e. CMetSp /\ W e. CPreHil ) -> W e. PreHil ) |
13 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
14 |
2 13
|
csslss |
|- ( ( W e. PreHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
15 |
12 14
|
sylan |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
16 |
13
|
lsssubg |
|- ( ( W e. LMod /\ U e. ( LSubSp ` W ) ) -> U e. ( SubGrp ` W ) ) |
17 |
10 15 16
|
syl2anc |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
18 |
1
|
subgbas |
|- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
19 |
17 18
|
syl |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> U = ( Base ` X ) ) |
20 |
|
eqid |
|- ( TopOpen ` W ) = ( TopOpen ` W ) |
21 |
2 20
|
csscld |
|- ( ( W e. CPreHil /\ U e. S ) -> U e. ( Clsd ` ( TopOpen ` W ) ) ) |
22 |
21
|
adantll |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> U e. ( Clsd ` ( TopOpen ` W ) ) ) |
23 |
19 22
|
eqeltrrd |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( Base ` X ) e. ( Clsd ` ( TopOpen ` W ) ) ) |
24 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
25 |
1 24
|
ressds |
|- ( U e. S -> ( dist ` W ) = ( dist ` X ) ) |
26 |
25
|
adantl |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( dist ` W ) = ( dist ` X ) ) |
27 |
26
|
eqcomd |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( dist ` X ) = ( dist ` W ) ) |
28 |
27
|
reseq1d |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( dist ` W ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
29 |
19 17
|
eqeltrrd |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( Base ` X ) e. ( SubGrp ` W ) ) |
30 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
31 |
30
|
subgss |
|- ( ( Base ` X ) e. ( SubGrp ` W ) -> ( Base ` X ) C_ ( Base ` W ) ) |
32 |
29 31
|
syl |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( Base ` X ) C_ ( Base ` W ) ) |
33 |
|
xpss12 |
|- ( ( ( Base ` X ) C_ ( Base ` W ) /\ ( Base ` X ) C_ ( Base ` W ) ) -> ( ( Base ` X ) X. ( Base ` X ) ) C_ ( ( Base ` W ) X. ( Base ` W ) ) ) |
34 |
32 32 33
|
syl2anc |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( Base ` X ) X. ( Base ` X ) ) C_ ( ( Base ` W ) X. ( Base ` W ) ) ) |
35 |
34
|
resabs1d |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( dist ` W ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
36 |
28 35
|
eqtr4d |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
37 |
36
|
eleq1d |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) <-> ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) ) |
38 |
|
eqid |
|- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
39 |
30 38
|
cmscmet |
|- ( W e. CMetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( CMet ` ( Base ` W ) ) ) |
40 |
39
|
adantr |
|- ( ( W e. CMetSp /\ W e. CPreHil ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( CMet ` ( Base ` W ) ) ) |
41 |
40
|
adantr |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( CMet ` ( Base ` W ) ) ) |
42 |
|
eqid |
|- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
43 |
42
|
cmetss |
|- ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( CMet ` ( Base ` W ) ) -> ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) <-> ( Base ` X ) e. ( Clsd ` ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) ) |
44 |
41 43
|
syl |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) <-> ( Base ` X ) e. ( Clsd ` ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) ) |
45 |
4
|
adantr |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> W e. MetSp ) |
46 |
20 30 38
|
mstopn |
|- ( W e. MetSp -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
47 |
45 46
|
syl |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
48 |
47
|
eqcomd |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( TopOpen ` W ) ) |
49 |
48
|
fveq2d |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( Clsd ` ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) = ( Clsd ` ( TopOpen ` W ) ) ) |
50 |
49
|
eleq2d |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( Base ` X ) e. ( Clsd ` ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( Base ` X ) e. ( Clsd ` ( TopOpen ` W ) ) ) ) |
51 |
37 44 50
|
3bitrd |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) <-> ( Base ` X ) e. ( Clsd ` ( TopOpen ` W ) ) ) ) |
52 |
23 51
|
mpbird |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) |
53 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
54 |
|
eqid |
|- ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) |
55 |
53 54
|
iscms |
|- ( X e. CMetSp <-> ( X e. MetSp /\ ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) ) |
56 |
7 52 55
|
sylanbrc |
|- ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> X e. CMetSp ) |