| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslsschl.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | cmslsschl.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | hlbn |  |-  ( W e. CHil -> W e. Ban ) | 
						
							| 4 |  | bnnvc |  |-  ( W e. Ban -> W e. NrmVec ) | 
						
							| 5 | 3 4 | syl |  |-  ( W e. CHil -> W e. NrmVec ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> W e. NrmVec ) | 
						
							| 7 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 8 | 7 | bnsca |  |-  ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) | 
						
							| 9 | 3 8 | syl |  |-  ( W e. CHil -> ( Scalar ` W ) e. CMetSp ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> ( Scalar ` W ) e. CMetSp ) | 
						
							| 11 |  | 3simpc |  |-  ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> ( X e. CMetSp /\ U e. S ) ) | 
						
							| 12 | 1 2 | cmslssbn |  |-  ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) | 
						
							| 13 | 6 10 11 12 | syl21anc |  |-  ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. Ban ) | 
						
							| 14 |  | hlcph |  |-  ( W e. CHil -> W e. CPreHil ) | 
						
							| 15 | 1 2 | cphsscph |  |-  ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) | 
						
							| 16 | 14 15 | sylan |  |-  ( ( W e. CHil /\ U e. S ) -> X e. CPreHil ) | 
						
							| 17 | 16 | 3adant2 |  |-  ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CPreHil ) | 
						
							| 18 |  | ishl |  |-  ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) | 
						
							| 19 | 13 17 18 | sylanbrc |  |-  ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CHil ) |